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1 Introduction

Studying the dynamic development of historical yield curves one sees three basic move-
ments: parallel shifts, twists, and changes of concavity or convexity. They occur in
any combination. The complexity of these movements corresponds to a wide range of
correlation patterns or covariance structures of the various interest rates. In simple
one-factor short rate models the evolution of the whole yield curve is completely de-
termined by the evolution of a single rate. This means that there is perfect correlation
along the curve. A market shock to interest rates affects all maturities in the same
way. Nevertheless, a simple short rate model may be useful to price a single product
which does not depend on the joint distribution of several interest rates. However,
often a whole range of financial products across many different maturities has to be
priced consistently within one model. Then the joint behaviour of the interest rates
does matter. With the increased volatility of the interest rate slope in recent years,
correlation derivatives products have become more strategic. We mention just CMS
spread options.

Extensions of the one-factor to a two- or three-factor model already allow to describe
the empirically observed correlations between short-, middle-, and long-term maturities
in a more realistic way. It was in the HJM forward rate approach ([12]) where the full
range of maturities could be considered simultaneously. This change to a function
valued view has made it possible to include the current yield curve in the model.
The basic quantities in the HJM approach are the instantaneous forward rates. Since
these rates are somewhat artificial, it has finally been the BGM or LIBOR market
model which has become very popular among practitioners. Volatility surfaces from
the actual markets show (see e.g. Eberlein and Kluge [6]) that the Brownian motion
driven HJM and market models are still not flexible enough to describe the real markets
with sufficient accuracy. In a series of papers a Lévy process driven interest rate theory
has been developed in order to achieve sufficient flexibility ([10, 8, 4, 6, 7, 5]). During
the extensions of the initial Lévy forward and Lévy LIBOR model it turned out that
the natural driving processes for interest rate models are time-inhomogeneous Lévy
processes. On this level the forward rate model, the LIBOR model, and the forward
process model are briefly described in the following. The interest for the latter stems
from its computational efficiency. For the implementation of these models a weak form
of time-inhomogeneity is sufficient, namely piecewise time-homogeneous Lévy processes.
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The purpose of this paper is to derive explicit formulae for the correlations in all
three models and to show the effects of the variation of the parameters of the generating
distribution on the correlation structure. A typical result is visualized in Figure 2 which
shows the correlations of zero coupon bond prices with maturities of two and four years
and five and ten years, respectively. The correlations increase if the driving process
approaches a Brownian motion which can be approximated by choosing α = δ = 1000.
In section 6 the extension of the LIBOR (and analogously of the forward process) model
to a multicurrency setting is considered. Explicit formulae for the correlations of the
interest rates across different economies are given.

In the last section we calibrate the Lévy forward model using empirical correlations
which are derived from historical prices of government bonds. The underlying data set
was provided by the Deutsche Bundesbank. The comparison of the Lévy driven model
with the classical Brownian motion driven model shows clearly that the latter one is
not able to describe empirically observed correlations appropriately.

2 The driving process

Let (Ω,F ,F,P) be a complete stochastic basis, where the filtration F = (Ft)t∈[0,T ∗]
satisfies the usual conditions. T ∗ > 0 is a finite time horizon and F = FT ∗ . The driving
process L = (Lt)t∈[0,T ∗] is a d-dimensional time-inhomogeneous Lévy process, i.e. an
adapted process with independent increments and absolutely continuous characteristics.
The law of Lt is given by its characteristic function

E
[
ei〈u,Lt〉

]
= exp

(∫ t

0

(
i〈u, bs〉 − 1

2
〈u, csu〉+

∫

Rd

(
ei〈u,x〉 − 1− i〈u, x〉

)
Fs(dx)

)
ds

)
.

(1)
As a consequence of assumption (EM) which is specified below, Lt has finite expec-

tation for all t ∈ [0, T ∗]. Therefore a truncation function is not needed in (1). Here,
bs ∈ Rd is the drift term, cs, the quadratic variation of the diffusion part, is a symmetric
non-negative definite d×d-matrix, and Fs(dx), the Lévy measure, is a measure on Rd

which integrates (x2 ∧ 1) and satisfies Fs({0}) = 0. We denote the Euclidian scalar
product on Rd by 〈·, ·〉 and the respective norm by | · |. We shall assume that

∫ T ∗

0

(
|bs|+ ‖cs‖+

∫

Rd

(|x|2 ∧ 1)Fs(dx)
)

ds < ∞, (2)

where ‖cs‖ = sup|x|≤1 |csx| is the usual norm on the d×d-matrices. We can also assume
that L starts from 0 and that the paths are right-continuous and have left-hand limits.
Furthermore, we shall make the following assumption on exponential moments.

Assumption (EM): There are constants M , ε > 0 such that

∫ T ∗

0

∫

{|x|>1}
exp〈u, x〉Fs(dx) ds < ∞

for every u ∈ [−(1 + ε)M, (1 + ε)M ]d. Without loss of generality we can also assume
that

∫
{|x|>1} exp〈u, x〉Fs(dx) < ∞ for all s ∈ [0, T ∗].

Assumption (EM) is equivalent to E [exp〈u, Lt〉] < ∞ for all t ∈ [0, T ∗] and all u
as stated above. In view of the martingale property of the underlying processes, the
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latter is a very natural assumption for the interest rate models which we shall consider
later. Under (EM) L is a special semimartingale with canonical representation

Lt =
∫ t

0
bs ds +

∫ t

0

√
cs dWs +

∫ t

0

∫

Rd

x (µ− ν)(ds, dx) (3)

for all t ∈ [0, T ∗], where W is a standard d-dimensional Brownian motion and
√

cs is
a measurable version of the square root of cs. µ is the random measure of jumps of L
with compensator ν(ds, dx) = Fs(dx) ds.

Define

θs(z) := 〈z, bs〉+
1
2
〈z, csz〉+

∫

Rd

(
e〈z,x〉 − 1− 〈z, x〉

)
Fs(dx) (4)

for s ∈ [0, T ∗] and z ∈ [−(1+ε)M, (1+ε)M ]d, where M is the constant from assumption
(EM). The following theorem is a special case of Proposition 8 in Eberlein and Kluge [6].
See Kluge [13, Proposition 1.9] for a proof in this generality. For (time-homogeneous)
Lévy processes this theorem goes back to Eberlein and Raible [10]. The result is
fundamental for the calculation of the correlations in the following sections and it is
also needed to construct the Lévy forward rate model in section 3.

Theorem 1 Let 0 ≤ t < T ≤ T ∗ and suppose that f : R≥0 → [−M, M ]d is a continu-
ous function. Then

E
[
exp

(∫ T

t
f(s) dLs

)]
= exp

(∫ T

t
θs(f(s)) ds

)
.

3 The Lévy forward rate model

The Lévy forward rate model has been introduced in Eberlein and Raible [10] in a
risk-neutral setting and it has been extended to the general setting in [8]. Results on
the uniqueness of the risk-neutral measure can be found in [4]. See [6] and [5] for the
calibration of the model and for efficient pricing of interest rate derivatives. The basic
quantities to be modeled in the Lévy HJM approach are the instantaneous forward
rates f(t, T ) given in the form

f(t, T ) := f(0, T ) +
∫ t

0
α(s, T ) ds−

∫ t

0
σ(s, T ) dLs, (5)

where 0 ≤ t ≤ T ≤ T ∗, L is a d-dimensional time-inhomogeneous Lévy process and
f(0, T ) are the given initial values. The coefficients α : [0, T ∗] × [0, T ∗] → R and σ :
[0, T ∗]×[0, T ∗] → Rd are deterministic, bounded functions such that 0 ≤ ∫ T

t σi(t, s) ds ≤
M/2 for all t ≤ T and all i ∈ {1, . . . , d}. M is the constant from assumption (EM).
Furthermore, we assume that α(s, T ) = 0 and σ(s, T ) = 0 for s > T . In general, it
is possible to assume that α(t, T ) and σ(t, T ) are random (see [4, 8]). But for the
implementations we choose deterministic volatility structures and therefore we make
this assumption here from the very beginning. Define Σ(s, T ) :=

∫ T
s∧T σ(s, u) du and

Σ(s, t, T ) := Σ(s, T )−Σ(s, t). Recall that the price of a (default-free) zero coupon bond
with maturity T at time t ≤ T is given by

B(t, T ) = exp
(
−

∫ T

t
f(t, u) du

)
.
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Let A(s, T ) :=
∫ T
s∧T α(s, u) du and A(s, t, T ) := A(s, T )−A(s, t). Essentially by apply-

ing Fubini’s theorem, we obtain

B(t, T ) =
B(0, T )
B(0, t)

exp
(
−

∫ t

0
A(s, t, T ) ds +

∫ t

0
Σ(s, t, T ) dLs

)
, (6)

where the starting values B(0, t) 6= 0 and B(0, T ) 6= 0 are given. Let r(s) := f(s, s)
denote the short rate. Again by Fubini’s theorem, the risk-free savings account Bt :=
exp

(∫ t
0 r(s) ds

)
can be written as

Bt =
1

B(0, t)
exp

(∫ t

0
A(s, t) ds−

∫ t

0
Σ(s, t) dLs

)
. (7)

From (6) and (7) we get another useful representation of zero coupon bond prices

B(t, T ) = B(0, T ) exp
(∫ t

0
(r(s)−A(s, T )) ds +

∫ t

0
Σ(s, T ) dLs

)
. (8)

Now, we choose A(s, T ) := θs(Σ(s, T )). Then Theorem 1 and (8) yield that the dis-
counted bond price processes (B−1

t B(t, T ))t∈[0,T ] are martingales for every T ∈ [0, T ∗].
Thus, the market is arbitrage-free.

In the Lévy forward rate model the forward processes F (·, T1, T2) and the LIBOR
rates L(t, T ) for an investment over a time period of length δ beginning in T can be
obtained from (6) using

F (t, T1, T2) =
B(t, T1)
B(t, T2)

and L(t, T ) =
1
δ
(F (t, T, T + δ)− 1). (9)

3.1 The correlations of zero coupon bond prices

In this part, we study the correlations of zero coupon bond prices in the Lévy forward
rate model.

Theorem 2 Let 0 ≤ t ≤ T1 ≤ T2 ≤ T ∗. The correlation of B(t, T1) and B(t, T2) is

Corr(B(t, T1), B(t, T2)) =
g1(t, T1, T2)− g2(t, T1, T2)√

h(t, T1)
√

h(t, T2)
,

where

g1(t, T1, T2) := exp
(∫ t

0
θs

(
Σ(s, t, T1) + Σ(s, t, T2)

)
ds

)
,

g2(t, T1, T2) := exp
(∫ t

0

(
θs(Σ(s, t, T1)) + θs(Σ(s, t, T2))

)
ds

)

and

h(t, T ) := exp
(∫ t

0
θs(2Σ(s, t, T )) ds

)
− exp

(∫ t

0
2θs(Σ(s, t, T )) ds

)
. (10)

Proof: From (6) and Theorem 1 we obtain

E[B(t, T )] =
B(0, T )
B(0, t)

exp
(
−

∫ t

0
A(s, t, T ) ds

)
exp

(∫ t

0
θs(Σ(s, t, T )) ds

)
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and

E
[
B(t, T )2

]
=

B(0, T )2

B(0, t)2
exp

(
−2

∫ t

0
A(s, t, T ) ds

)
exp

(∫ t

0
θs(2Σ(s, t, T )) ds

)
.

Hence, we have

Var(B(t, T )) = h(t, T )
B(0, T )2

B(0, t)2
exp

(
−2

∫ t

0
A(s, t, T ) ds

)
.

Similarly we get

E[B(t, T1)B(t, T2)]

= g1(t, T1, T2)
B(0, T1)B(0, T2)

B(0, t)2
exp

(
−

∫ t

0
(A(s, t, T1) + A(s, t, T2)) ds

)

and
Corr(B(t, T1), B(t, T2)) =

E[B(t, T1)B(t, T2)]− E[B(t, T1)]E[B(t, T2)]√
Var(B(t, T1))

√
Var(B(t, T2))

completes the proof. 2

In the same way, we obtain the correlation of B(t1, T1) and B(t2, T2) for different
times t1 and t2. Let 0 ≤ t1 ≤ T1 ≤ T ∗ and 0 ≤ t2 ≤ T2 ≤ T ∗ such that t1 ≤ t2. Then
the correlation of B(t1, T1) and B(t2, T2) is

Corr(B(t1, T1), B(t2, T2))

= exp
(∫ t2

t1

θs(Σ(s, t2, T2)) ds

)
g1(t1, t2, T1, T2)− g2(t1, t2, T1, T2)√

h(t1, T1)
√

h(t2, T2)
,

(11)

where

g1(t1, t2, T1, T2) := exp
(∫ t1

0
θs

(
Σ(s, t1, T1) + Σ(s, t2, T2)

)
ds

)
,

g2(t1, t2, T1, T2) := exp
(∫ t1

0

(
θs(Σ(s, t1, T1)) + θs(Σ(s, t2, T2))

)
ds

)

and h is given by (10).
Expressions for the correlations of the forward process and the LIBOR rates can be

derived analogously starting from definition (9).

3.2 Generalized hyperbolic Lévy motion

Generalized hyperbolic Lévy motions allow an almost perfect fit of model returns to
financial data (see Eberlein [3]). They are generated by generalized hyperbolic (GH)
distributions, i.e. a class of distributions with parameters λ ∈ R, α > 0, β ∈ (−α, α),
δ > 0 and µ ∈ R. Given the five parameters its characteristic function is

ΦGH(u) = eiµu

(
α2 − β2

α2 − (β + iu)2

)λ
2 Kλ(δ

√
α2 − (β + iu)2)

Kλ(δ
√

α2 − β2)
, (12)

where Kλ denotes the modified Bessel function of the third kind with index λ. Gener-
alized hyperbolic distributions are infinitely divisible (see [1]). Therefore, they generate
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Lévy processes which we call generalized hyperbolic Lévy motions. For λ = −1/2 one
gets the subclass of normal inverse Gaussian (NIG) Lévy motions. The characteristic
function of NIG distributions simplifies to

ΦNIG(u) = eiµu
exp

(
δ
√

α2 − β2
)

exp
(
δ
√

α2 − (β + iu)2
) . (13)

For most purposes in financial modeling subclasses with a smaller number of parameters
(such as the NIG distributions or the hyperbolic distributions which correspond to
λ = 1) already provide sufficient flexibility.
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Figure 1: Correlation of zero coupon bond prices for α = 100, β = 0, δ = 1 and
a = 0.05

Figure 1 shows the correlations of zero coupon bond prices along the time axis t
up to maturity of the bond with the shorter maturity for different pairs T1, T2. The
driving process L is a NIG Lévy motion and we used a Vasiček volatility structure

σ(s, T ) = σ0e
−a(T−s) (14)

with a 6= 0. We can set σ0 = 1 as this parameter can be included in the driving Lévy
process. Note that the correlation does not depend on the parameter µ.

The normal inverse Gaussian distribution with β = 0 converges weakly to a normal
distribution with variance σ2 if α →∞ and δ →∞ such that δ/α → σ2 (see Eberlein
and von Hammerstein [11]). Figure 2 shows that the correlations of zero coupon bond
prices increase if the driving process approaches a standard Brownian motion.

4 The Lévy LIBOR model

In the Lévy LIBOR model (or Lévy market model) the basic quantities are the forward
LIBOR rates which are modeled directly by a driving time-inhomogeneous Lévy process.

4.1 The construction of the model

The Lévy LIBOR model is constructed via a backward induction (see Eberlein and
Özkan [9]). Assume that a discrete tenor structure 0 = T0 < T1 < · · · < TN < TN+1 =
T ∗ is given and set δk := Tk+1 − Tk. The starting point is a d-dimensional time-
inhomogeneous Lévy process LTN+1 on a complete stochastic basis (Ω,FTN+1

,F,PTN+1
)
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Figure 2: Correlation of zero coupon bond prices for β = 0, a = 0.7 (on the left
side) and β = 0, a = 0.005 (on the right side respectively)

which satisfies the assumption (EM). PTn+1 can be interpreted as the forward measure
corresponding to time TN+1. According to (3) the canonical representation of LTN+1 is

L
TN+1

t =
∫ t

0
b
TN+1
s ds +

∫ t

0

√
cs dW

TN+1
s +

∫ t

0

∫

Rd

x (µ− νTN+1)(ds, dx), (15)

where W TN+1 is a d-dimensional standard Brownian motion under PTN+1
. µ is the

random measure of jumps of LTN+1 and νTN+1(ds, dx) = F
TN+1
s (dx)ds is the PTN+1

-
compensator of µ. The model is based on the following assumptions.

Assumption (LR.1): For every Ti there is a bounded, continuous, deterministic
function λ(·, Ti) : [0, T ∗] → Rd which represents the volatility of the forward LIBOR
rate L(·, Ti). We assume that

N∑

i=1

|λj(s, Ti)| ≤ M

for all s ∈ [0, T ∗] and all j ∈ {1, . . . , d}. M is the constant from assumption (EM) and
λ(s, Ti) = 0 for s > Ti.

Assumption (LR.2): The initial zero coupon bond prices B(0, Ti), i ∈ {1, . . . , N +1},
are strictly positive and strictly decreasing in i. Consequently, the initial values of the
LIBOR rates are given by

L(0, Ti) =
1
δi

(
B(0, Ti)

B(0, Ti+1)
− 1

)
> 0.

To start the backward induction the most distant LIBOR rate L(t, TN ) is defined
as

L(t, TN ) := L(0, TN ) exp
(∫ t

0
λ(s, TN ) dL

TN+1
s

)
. (16)

The drift coefficient bTN+1 is chosen in such a way that L(·, TN ) is a martingale under
PTN+1

. Then, the forward measure PTN
corresponding to time TN is defined by the

Radon–Nikodym derivative

dPTN

dPTN+1

=
1 + δNL(TN , TN )
1 + δNL(0, TN )

. (17)
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Applying Girsanov’s theorem (for semimartingales), we see that under PTN
the process

LTN+1 is a semimartingale with canonical representation

L
TN+1
t =

∫ t

0
b̃TN
s ds +

∫ t

0

√
cs dW TN

s +
∫ t

0

∫

Rd

x (µ− νTN )(ds, dx), (18)

where W TN is a standard Brownian motion. νTN is the PTN
-compensator of µ. In

general, νTN and b̃TN
s are no longer deterministic and therefore LTN+1 is not a time-

inhomogeneous Lévy process under PTN
anymore. In the next step the LIBOR rates

L(·, TN−1) are defined. For a drift term (bTN
s ) consider the semimartingale

LTN
t :=

∫ t

0
bTN
s ds +

∫ t

0

√
cs dW TN

s +
∫ t

0

∫

Rd

x (µ− νTN )(ds, dx), (19)

where cs, W TN and νTN are as in (18). The LIBOR rates L(t, TN−1) are given by

L(t, TN−1) := L(0, TN−1) exp
(∫ t

0
λ(s, TN−1) dLTN

s

)
. (20)

Again, bTN is chosen in such a way that L(·, TN−1) is a martingale under PTN
.

Continuing via backward induction we get forward LIBOR rates L(·, Tj) and for-
ward martingale measures PTj+1 such that for every j ∈ {1, . . . , N} L(·, Tj) is a PTj+1-
martingale of the form

L(t, Tj) = L(0, Tj) exp
(∫ t

0
λ(s, Tj) dL

Tj+1
s

)
, (21)

where LTj+1 is a semimartingale with the canonical representation

L
Tj+1

t =
∫ t

0
b
Tj+1
s ds +

∫ t

0

√
cs dW

Tj+1
s +

∫ t

0

∫

Rd

x (µ− νTj+1)(ds, dx) (22)

for an appropriately chosen drift term (bTj+1
s ).

In (22), W Tj+1 is a d-dimensional standard Brownian motion under PTj+1 and
νTj+1(ds, dx) is the PTj+1-compensator of µ. From the backward induction (see [9,
p. 338–342]) we derive the relations

W
Tj

t = W
Tj+1

t −
∫ t

0
`(s−, Tj)

√
csλ(s, Tj) ds (23)

where
`(s−, Tj) :=

δjL(s−, Tj)
1 + δjL(s−, Tj)

(24)

and
νTj+1(ds, dx) = F

Tj+1
s (dx)ds (25)

where
F

Tj
s (dx) =

(
`(s−, Tj)

(
e〈λ(s,Tj),x〉 − 1

)
+ 1

)
F

Tj+1
s (dx). (26)

Let i > j. Then LTi+1 and LTj+1 differ only by a drift term. We have

L
Ti+1
t − L

Tj+1

t =
∫ t

0
di,j

s ds (27)
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with

di,j
s = b

Ti+1
s − b

Tj+1
s +

i∑

k=j+1

`(s−, Tk)
(

csλ(s, Tk) +
∫

Rd

x
(
e〈λ(s,Tk),x〉 − 1

)
F

Tk+1
s (dx)

)
.

(28)

4.2 The correlations of the LIBOR rates

As already pointed out, the driving processes LTj+1 , which are constructed during the
backward induction, are in general not time-inhomogeneous Lévy processes anymore.
From now on, we approximate the random terms

`(s−, Ti) =
δiL(s−, Ti)

1 + δiL(s−, Ti)

by their deterministic initial values

`(0, Ti) =
δiL(0, Ti)

1 + δiL(0, Ti)
. (29)

This will enable us to calculate the correlations of the LIBOR rates because then
all driving processes LTi+1 are time-inhomogeneous Lévy processes and differ only by
deterministic drift terms as given in (27). Set

θ̃
Ti+1
s (z) :=

1
2
〈z, csz〉+

∫

Rd

(
e〈z,x〉 − 1− 〈z, x〉

)
F

Ti+1
s (dx) (30)

and define the time-inhomogeneous Lévy process L̃Ti+1 by L̃
Ti+1

t := L
Ti+1

t −∫ t
0 b

Ti+1
s ds.

Theorem 3 Let i, j, k ∈ {1, . . . , N} and 0 ≤ t ≤ min{Ti, Tj}. Then, given the mea-
sure PTk+1

(and under the approximation), the correlation of the LIBOR rates L(t, Ti)
and L(t, Tj) is

CorrPTk+1
(L(t, Ti), L(t, Tj)) =

g1(t, i, j, k)− g2(t, i, j, k)√
h(t, i, k))

√
h(t, j, k)

,

where

g1(t, i, j, k)) := exp
(∫ t

0
θ̃

Tk+1
s

(
λ(s, Ti) + λ(s, Tj)

)
ds

)
,

g2(t, i, j, k)) := exp
(∫ t

0

(
θ̃

Tk+1
s

(
λ(s, Ti)

)
+ θ̃

Tk+1
s

(
λ(s, Tj)

))
ds

)

and for l ∈ {i, j} we set

h(t, l, k) := exp
(∫ t

0
θ̃

Tk+1
s (2λ(s, Tl)) ds

)
− exp

(
2

∫ t

0
θ̃

Tk+1
s (λ(s, Tl)) ds

)
.

Proof: For l ∈ {i, j}, we have

L
Tl+1

t = L̃
Tk+1

t +
∫ t

0

(
b
Tk+1
s + dl,k

s

)
ds.

9



Theorem 1 leads to

EPTk+1
[L(t, Tl)]

= L(0, Tl) exp
(∫ t

0

〈
λ(s, Tl), dl,k

s + b
Tk+1
s

〉
ds

)
exp

(∫ t

0
θ̃

Tk+1
s (λ(s, Tl)) ds

)
,

EPTk+1

[
L(t, Tl)2

]

= L(0, Tl)2 exp
(

2
∫ t

0

〈
λ(s, Tl), dl,k

s + b
Tk+1
s

〉
ds

)
exp

(∫ t

0
θ̃

Tk+1
s (2λ(s, Tl)) ds

)
,

and

VarPTk+1
(L(t, Tl))

= L(0, Tl)2 exp
(

2
∫ t

0

〈
λ(s, Tl), dl,k

s + b
Tk+1
s

〉
ds

)

·
(

exp
(∫ t

0
θ̃

Tk+1
s

(
2λ(s, Tl)

)
ds

)
− exp

(
2

∫ t

0
θ̃

Tk+1
s (λ(s, Tl)) ds

))
.

Similarly, we obtain

EPTk+1
[L(t, Ti)L(t, Tj)]

= g1(t, i, j, k) L(0, Ti)L(0, Tj)

· exp
(∫ t

0

(〈
λ(s, Ti), di,k

s + b
Tk+1
s

〉
+

〈
λ(s, Tj), dj,k

s + b
Tk+1
s

〉)
ds

)

and the proof is completed by

CorrPTk+1
(L(t, Ti), L(t, Tj))

=
EPTk+1

[L(t, Ti)L(t, Tj)]− EPTk+1
[L(t, Ti)]EPTk+1

[L(t, Tj)]√
VarPTk+1

(L(t, Ti))
√

VarPTk+1
(L(t, Tj))

. 2

In the same way, the correlation of L(t1, Ti) and L(t2, Tj) can be calculated for
different times t1 and t2. Let i, j, k ∈ {1, . . . , N} and 0 ≤ t1 ≤ t2 ≤ min{Ti, Tj}. Then,
given the measure PTk+1

(and under the approximation), the correlation of the LIBOR
rates L(t1, Ti) and L(t2, Tj) is

CorrPTk+1
(L(t1, Ti), L(t2, Tj))

= exp
(∫ t2

t1

θ̃
Tk+1
s (λ(s, Tj)) ds

)
g1(t1, i, j, k)− g2(t1, i, j, k)√

h(t1, i, k)
√

h(t2, j, k)
,

where g1, g2 and h are defined as in Theorem 3.
A suitable volatility structure for the LIBOR rates is given by

λ(t, Ti) = a(Ti − t) exp(−b(Ti − t)) + c (31)

with parameters a, b and c (see [14]). Here, we set a = 1 as this parameter can be
included in the driving process. The figures 3–8 show the correlation of LIBOR rates
in the Lévy LIBOR model under the measure PTN+1

. We have assumed that LTN+1 is a
Lévy process which is generated by a normal inverse Gaussian distribution (see section
3).
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5 The Lévy forward process model

In the Lévy forward process model the forward processes F (·, Ti, Ti+1) are modeled by
time-inhomogeneous Lévy processes in a similar way as the LIBOR rates have been
modeled in the last section. The LIBOR rates can be deduced from the forward pro-
cesses by

L(t, T ) =
1
δ
(F (t, T, T + δ)− 1). (32)

The Lévy forward process model is derived by a backward induction similar to the
one of the Lévy LIBOR model (see [9] and [5]). This approach has the advantage that
the driving processes remain time-inhomogeneous Lévy processes so that any approxi-
mation can be avoided.

Let 0 = T0 < T1 < · · · < TN < TN+1 = T ∗ denote a discrete tenor structure and set
δk := Tk+1−Tk. The construction of the model starts again with a d-dimensional time-
inhomogeneous Lévy process LTN+1 on a complete stochastic basis (Ω,FTN+1

,F,PTN+1
)

which satisfies assumption (EM). Its canonical representation is given by (15). We
make the following assumptions.

Assumption (FP.1): For every Ti there is a bounded, continuous, deterministic
function λ(·, Ti) : [0, T ∗] → [−M/2,M/2]d which represents the volatility of the forward
process F (·, Ti, Ti+1). We assume that for all k ∈ {1, . . . , N}

∣∣∣∣∣
k∑

i=1

λj(s, Ti)

∣∣∣∣∣ ≤ M

holds for all s ∈ [0, T ∗] and all j ∈ {1, . . . , d}. Here, M is the constant from assumption
(EM) and we set λ(s, Ti) = 0 for s > Ti.

Assumption (FP.2): The initial values of the zero coupon bond prices B(0, Ti),
i ∈ {1, . . . , N + 1}, are strictly positive. Consequently, the initial values of the forward
processes are given by F (0, Ti, Ti+1) = B(0, Ti)/B(0, Ti+1).

Then the forward processes F (·, Ti, Ti+1) are given by

F (t, Ti, Ti+1) := F (0, Ti, Ti+1) exp
(∫ t

0
λ(s, Ti) dL

Ti+1
s

)
(33)

where LTi+1 are time-inhomogeneous Lévy processes. For i ∈ {1, . . . , N}, the driving
processes LTi+1 and the forward martingale measures PTi+1 are constructed by a back-
ward induction in a similar way as in section 4.1. Here, the time-inhomogeneous Lévy
processes LTi+1 differ only by deterministic drift terms. Define θ̃

Ti+1
s as in (30).

The correlations of the forward processes and the LIBOR rates in the Lévy forward
process model can now be calculated in exactly the same way as in the Lévy LIBOR
model in section 4.2.

Let i, j, k ∈ {1, . . . , N} and 0 ≤ t ≤ min{Ti, Tj}. Then under the measure PTk+1

the correlation of F (t, Ti, Ti+1) and F (t, Tj , Tj+1) is given by

CorrPTk+1
(F (t, Ti, Ti+1), F (t, Tj , Tj+1)) =

g1(t, i, j, k)− g2(t, i, j, k)√
h(t, i, k)

√
h(t, j, k)

, (34)
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where

g1(t, i, j, k)) := exp
(∫ t

0
θ̃

Tk+1
s

(
λ(s, Ti) + λ(s, Tj)

)
ds

)
,

g2(t, i, j, k)) := exp
(∫ t

0

(
θ̃

Tk+1
s

(
λ(s, Ti)

)
+ θ̃

Tk+1
s

(
λ(s, Tj)

))
ds

)

and for l ∈ {i, j} we set

h(t, l, k) := exp
(∫ t

0
θ̃

Tk+1
s

(
2λ(s, Tl)

)
ds

)
− exp

(
2

∫ t

0
θ̃

Tk+1
s

(
λ(s, Tl)

)
ds

)
.

Under PTk+1
, the LIBOR rates L(t, Ti) and L(t, Tj) have the same correlation as

F (t, Ti, Ti+1) and F (t, Tj , Tj+1). This follows immediately from (32).
Let 0 ≤ t1 ≤ t2 ≤ min{Ti, Tj}. The correlation of F (t1, Ti, Ti+1) and F (t2, Tj , Tj+1)

under PTk+1
is

CorrPTk+1
(F (t1, Ti, Ti+1), F (t2, Tj , Tj+1))

= exp
(∫ t2

t1

θ̃
Tk+1
s (λ(s, Tj)) ds

)
g1(t1, i, j, k)− g2(t1, i, j, k)√

h(t1, i, k)
√

h(t2, j, k)

(35)

with g1, g2 and h defined as above. The LIBOR rates L(t1, Ti) and L(t2, Tj) again have
the same correlation as F (t1, Ti, Ti+1) and F (t2, Tj , Tj+1) under PTk+1

.

6 The cross-currency Lévy LIBOR model

The cross-currency Lévy LIBOR model is an extension of the Lévy LIBOR model to a
multi-currency setting (see Eberlein and Koval [7]).

6.1 Construction of the model

We consider m + 1 markets with different currencies. They are labelled with indices
0, 1, . . . , m where 0 denotes the domestic market. Let 0 = T0 < T1 < · · · < TN <
TN+1 = T ∗ be a discrete tenor structure which is assumed to be the same for ev-
ery market. Set δk = Tk+1 − Tk. The construction of the model starts with a d-
dimensional time-inhomogeneous Lévy process L0,TN+1 on a complete stochastic basis
(Ω,FTN+1

,F,P0,TN+1) which satisfies assumption (EM). The canonical representation
of L0,TN+1 is given by

L
0,TN+1

t =
∫ t

0
b
0,TN+1
s ds +

∫ t

0

√
cs dW

0,TN+1
s +

∫ t

0

∫

Rd

x (µ− ν0,TN+1)(ds, dx), (36)

where W 0,TN+1 is a d-dimensional standard Brownian motion under P0,TN+1
. µ is the

random measure of jumps of L0,TN+1 and ν0,TN+1 is the P0,TN+1
-compensator of µ.

As a first step, a model for the forward exchange rates is designed. It is based on
the following assumptions.

Assumption (FXR.1): For every market i ∈ {0, 1, . . . , m} there is a strictly posi-
tive family of zero coupon bond prices Bi(0, Tj), j ∈ {1, . . . , N + 1}, which is strictly
decreasing in j. Furthermore, we assume that positive spot exchange rates Xi(0) are

13



given as initial values (expressed in units of the domestic currency per unit of the for-
eign currency). Then the initial value of the forward exchange rate for time T ∗ is given
by

FXi(0, T ∗) =
Bi(0, T ∗)Xi(0)

B0(0, T ∗)
.

Assumption (FXR.2): For every foreign market i ∈ {1, . . . ,m} there is a continuous
deterministic function ξi(·, T ∗) : [0, T ∗] → Rd. We assume that there is a constant
M ∈ (0,M/(N + 2)) such that

0 ≤ (ξi(s, T ∗))k ≤ M

for all components k ∈ {1, . . . , d}, all s ∈ [0, T ∗] and all i ∈ {1, . . . , m}. Here, M is the
constant from assumption (EM).

Assumption (FXR.3): For every i ∈ {1, . . . ,m} the forward exchange rate for T ∗ is
given by

FXi(t, T ∗) := FXi(0, T ∗) exp
(∫ t

0
γi(s, T ∗) ds +

∫ t

0
ξi(s, T ∗) dL

0,TN+1
s

)
,

where the drift coefficients γi(·, T ∗) are chosen in such a way that FXi(·, T ∗) is a mar-
tingale under P0,TN+1

.

For every foreign market i ∈ {1, . . . ,m}, forward martingale measures Pi,TN+1
asso-

ciated with TN+1 = T ∗ are defined by the Radon–Nikodym derivative

dPi,TN+1

dP0,TN+1

∣∣∣∣∣
Ft

=
FXi(t, T ∗)
FXi(t, T ∗)

. (37)

According to Girsanov’s theorem, L0,TN+1 is a time inhomogeneous Lévy process
under Pi,TN+1

with the canonical representation

L
0,TN+1

t =
∫ t

0
b̃
i,TN+1
s ds +

∫ t

0

√
cs dW

i,TN+1
s +

∫ t

0

∫

Rd

x (µ− νi,TN+1)(ds, dx), (38)

where W i,TN+1 is a d-dimensional standard Brownian motion under Pi,TN+1
and νi,TN+1

is the Pi,TN+1
-compensator of µ.

Then, we define driving processes Li,TN+1 for every foreign market i ∈ {1, . . . , d} by

L
i,TN+1
t :=

∫ t

0
b
i,TN+1
s ds +

∫ t

0

√
cs dW

i,TN+1
s +

∫ t

0

∫

Rd

x (µ− νi,TN+1)(ds, dx). (39)

Here, W i,TN+1 and νi,TN+1 are given by (38) and bi,TN+1 is specified during the con-
struction of the LIBOR rates. The time-inhomogeneous Lévy processes Li,TN+1 differ
only by deterministic drift terms.

Now, a model for the LIBOR rates Li(·, Tj) in every market i ∈ {0, 1, . . . , m} can
be constructed. In every market, i.e. keeping i fixed, the construction is exactly the
same as the construction of the Lévy LIBOR model in section 4. We obtain driving
processes Li,Tj+1 and measures Pi,Tj+1 so that the LIBOR rates Li(·, Tj) are given in
the form

Li(t, Tj) = Li(0, Tj) exp
(∫ t

0
λi(s, Tj) dL

i,Tj+1
s

)
. (40)

As in section 4, the LIBOR rates Li(·, Tj) are martingales under Pi,Tj+1 .
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6.2 Correlations of the LIBOR rates

The correlations of the LIBOR rates in the cross-currency Lévy LIBOR model can
be calculated in the same way as in the Lévy LIBOR model. Here, we use again the
approximation which has been introduced in section 4.2.

With this approximation, all the driving processes Li,Tj+1 are time-inhomogeneous
Lévy processes which differ only by deterministic drift terms. Li,Tj+1 has the canonical
representation

L
i,Tj+1

t =
∫ t

0
b
i,Tj+1
s ds +

∫ t

0

√
cs dW

i,Tj+1
s +

∫ t

0

∫

Rd

x (µ− νi,Tj+1)(ds, dx), (41)

where νi,Tj+1(ds, dx) = F
i,Tj+1
s (dx) ds is the Pi,Tj+1-compensator of µ. Define

θ̃
i,Tj+1
s (z) :=

1
2
〈z, csz〉+

∫

Rd

(
e〈z,x〉 − 1− 〈z, x〉

)
F

i,Tj+1
s (dx). (42)

Let i1, i2, l ∈ {0, 1, . . . , m} and j1, j2, k ∈ {1, . . . , N}. Consider t ∈ [0, T ∗] such that 0 ≤
t ≤ min{Tj1 , Tj2}. Then the correlation of the LIBOR rates Li1(t, Tj1) and Li2(t, Tj2)
under the measure Pl,Tk+1

is

CorrPl,Tk+1
(Li1(t, Tj1), L

i2(t, Tj2)) =
g1(t, i1, i2, j1, j2, l, k)− g2(t, i1, i2, j1, j2, l, k)√

h(t, i1, j1, l, k))
√

h(t, i2, j2, l, k)
,

(43)
where

g1(t, i1, i2, j1, j2, l, k)) := exp
(∫ t

0
θ̃

l,Tk+1
s

(
λi1(s, Tj1) + λi2(s, Tj2)

)
ds

)
,

g2(t, i1, i2, j1, j2, l, k)) := exp
(∫ t

0

(
θ̃

l,Tk+1
s

(
λi1(s, Tj1)

)
+ θ̃

l,Tk+1
s

(
λi2(s, Tj2)

))
ds

)

and for p ∈ {1, 2} we define

h(t, ip, jp, l, k) := exp
(∫ t

0
θ̃

l,Tk+1
s

(
2λip(s, Tjp)) ds

)
− exp

(
2

∫ t

0
θ̃

l,Tk+1
s (λip(s, Tjp)) ds

)
.

Now, consider different times t1 and t2 such that 0 ≤ t1 ≤ t2 ≤ min{Tj1 , Tj2}. Then the
correlation of the LIBOR rates Li1(t1, Tj1) and Li2(t2, Tj2) under the measure Pl,Tk+1

is given by

CorrPl,Tk+1
(Li1(t1, Tj1), L

i2(t2, Tj2))

= exp
(∫ t2

t1

θ̃
l,Tk+1
s (λi2(s, Tj2)) ds

)
g1(t1, i1, i2, j1, j2, l, k)− g2(t1, i1, i2, j1, j2, l, k)√

h(t1, i1, j1, l, k)
√

h(t2, i2, j2, l, k)
,

(44)

where g1, g2 and h are defined as above.

7 Calibration of the Lévy forward rate model

The correlation formulas which we derived in section 3.1 allow to calibrate the Lévy
forward rate model based on empirical correlations. The calibration is done in two
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steps. In a first step, we estimate correlations between prices of zero coupon bonds
using yield curve data. Then in a second step, we use the correlations to estimate
the parameters of the driving Lévy process. In the implementation of the estimation
procedure we use a Ho–Lee volatility structure

Σ(s, T ) = σ0(T − s). (45)

Without loss of generality we set σ0 = 1. As driving processes we consider NIG Lévy
processes and Brownian motions. The special case of the Lévy forward rate model
driven by a Brownian motion is the HJM model. The method described below can
be used in the same way for other stationary volatility structures and general GH
processes.

The underlying data set consists of yield curve estimates expressed in terms of
their Svensson parameters ([15]). These parameters were estimated by the Deutsche
Bundesbank on a daily basis using German government bonds that are listed at the
Frankfurt exchange. We use sets of parameters derived from quotes starting August 7,
1997 and ending April 9, 2008, i.e. we consider 2707 trading days. Based on this data
set we get B(t, T ) for every day t and any traded maturity T .

In order to estimate correlations, we need independent samples for each price. To
create these samples we define the following quantities

Lemma 4 For fixed t, T, ∆, where t < T and ∆ ∈ [0, T ∗ − T ], define the random
variable

B∆(t, T ) := B(t + ∆, T + ∆)
B(0, T )
B(0, t)

B(∆, t + ∆)
B(∆, T + ∆)

, (46)

then B∆(t, T ) has the same distribution as B(t, T ). Furthermore for ∆ ≥ t, B∆(t, T )
is independent of B(t, T ).

Proof: Using the representation (6) for B(t+∆, T +∆), B(∆, T +∆) and B(∆, t+∆)
we get

B(t + ∆, T + ∆)

=
B(∆, T + ∆)
B(∆, t + ∆)

exp
(
−

∫ t+∆

∆
A(s, t + ∆, T + ∆) ds +

∫ t+∆

∆
Σ(s, t + ∆, T + ∆) dLs

)
.

Inserting the Ho–Lee volatility structure and using the stationarity of L and Σ finishes
the proof. Note that we also assume stationarity of the drift coefficient, i.e. A(s, T ) =
A(0, T − s) for all s ≤ T . 2

As a consequence, we get independent random variables B∆(t, T ) if we choose ∆ =
t, 2t, 3t, . . . Based on the given dataset, we calculate now the values of B∆(t, T ) for any
discrete t and T with 0 ≤ t ≤ T ≤ T ∗ and ∆ ∈ {t, 2t, 3t, . . . }. These will be used as
samples to estimate Corr(B(t, T1), B(t, T2)). Note that the samples have to satisfy the
following equation

Lemma 5

Corr(B∆(t, T1), B∆(t, T2)) = Corr(B(t, T1), B(t, T2)) ∀ ∆ ≥ t.
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Proof: Using the Ho–Lee volatility structure, we get

E
[
exp

(∫ t

0
Σ(s, t, T1) d(L∆+s − L∆) +

∫ t

0
Σ(s, t, T2) d(L∆+s − L∆)

)]

= E[exp((T1 + T2 − 2t)(L∆+t − L∆))]. (47)

With (47) and the stationarity of L we have

E[B∆(t, T1) B∆(t, T2)] = E[B(t, T1) B(t, T2)],
E[B∆(t, Ti)] = E[B(t, Ti)] and Var(B∆(t, Ti)) = Var(B(t, Ti)) for i ∈ {1, 2}. 2

As an estimator for Corr(B(t, T1), B(t, T2)) we use the usual empirical correlation
given by

Ĉorr(B(t, T1), B(t, T2))

=
∑n

i=0(B
it(t, T1)− B̄(t, T1))(Bit(t, T2)− B̄(t, T2))√∑n

i=0(Bit(t, T1)− B̄(t, T1))2
√∑n

i=0(Bit(t, T2)− B̄(t, T2))2
, (48)

whereas n = [2707/t]. B̄(t, T1) and B̄(t, T2) are the arithmetic means of B0t(t, T1), . . . ,
Bnt(t, T1) and B0t(t, T2), . . . , Bnt(t, T2) respectively. Evidently the smaller the value of
t is chosen, the more samples can be used for the estimation.

In a second step, we use the estimated correlations to estimate the parameters α,
β and δ of the NIG distribution and the parameter σ of the normal distribution. As
mentioned in section 3.2, correlations do not depend on the parameter µ of the NIG
distribution. Consequently there is no possibility and also no need to estimate µ. The
same holds for the parameter µ of the normal distribution.

Note that for Lévy processes θs in (4) does not depend on s. Therefore using the
relation θ(u) = log(Φ(−iu)) and equation (13), one can write θ as a function of the
parameters of the NIG distribution. For the Brownian motion, we get θ(u) = µu+ 1

2σ2u2

using equation (4). Together with Theorem 2 correlations can be expressed in terms of
the parameters of the driving process.

Now we estimate the parameters using the method of least squares. As an estimator
(α̂, β̂, δ̂) for (α, β, δ) we use the parameters which minimize the following function

100 days∑

t=1 day

10 years∑

T1=1 year

10 years∑

T2=1 year

(Ĉorr(B(t, T1), B(t, T2))− Corr(B(t, T1), B(t, T2)))2. (49)

The same objective function is used to get the parameter σ in case of the normal distri-
bution. A maximum of 100 days is used for t. For greater values of t, the estimation of
correlations would become too instable, as explained above. For T1 and T2 we use 1 to
10 years, because this is the time period which underlies the estimation of the Svensson
parameters.

Table 1 shows the estimated parameter values. Figure 9 shows the estimated cor-
relations as points. The lines represent the correlations which are calculated from the
formula in Theorem 2 using the parameters given in Table 1. The figure shows that
using general Lévy processes, one gets a good fit, while using Brownian motions, the
model cannot produce realistic correlations.
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Table 1: Estimated parameters

NIG Lévy process: α̂= 2851.521, β̂= -2841.248, δ̂= 4.36e-15

Brownian motion: σ̂= 5.713723e-05
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Figure 9: Empirical correlations (points) and correlations calculated from the
models (lines) for the calibrations with NIG Lévy processes (left) and
with Brownian motions (right)

Conclusion

We have derived explicit formulae for the correlations of interest rates for different ma-
turities in Lévy interest rate models. The full range of forward rate (HJM), LIBOR and
forward process models driven by Lévy or more general processes has been considered.
We have also discussed the extension to a multicurrency setting.

The numerical implementation shows that in all models the correlations increase
if the driving process approaches a Brownian motion. This is a consequence of the
restricted flexibility of Brownian motion compared to other Lévy processes. In the
forward rate model the correlations of zero coupon bond prices decrease monotonically if
the distance of the maturities grows. This behaviour cannot be observed for correlations
in the LIBOR model. Here the correlations decline at first but then start to increase
again. Finally we calibrate the Lévy forward rate model using empirical correlations
from German government bond price data. The failure to model correlations with a
Brownian motion driven approach becomes evident.
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