

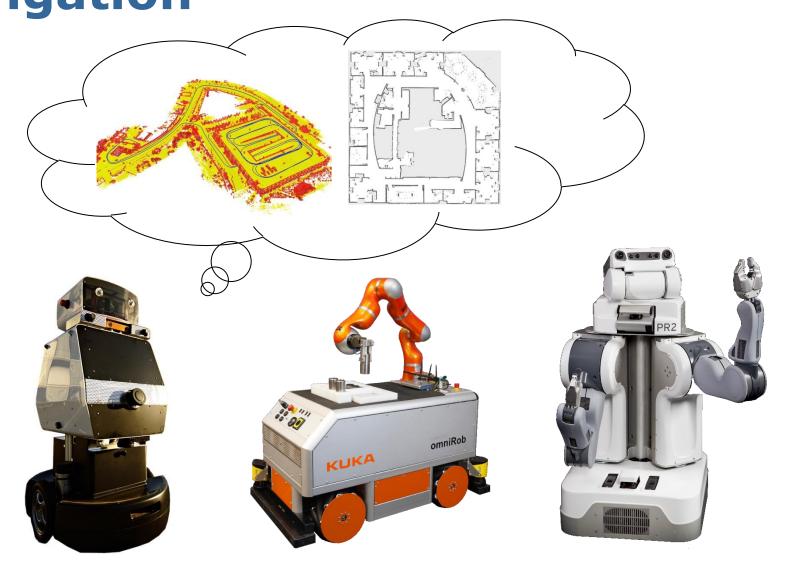
Dynamic Covariance Scaling for Robust Robot Mapping

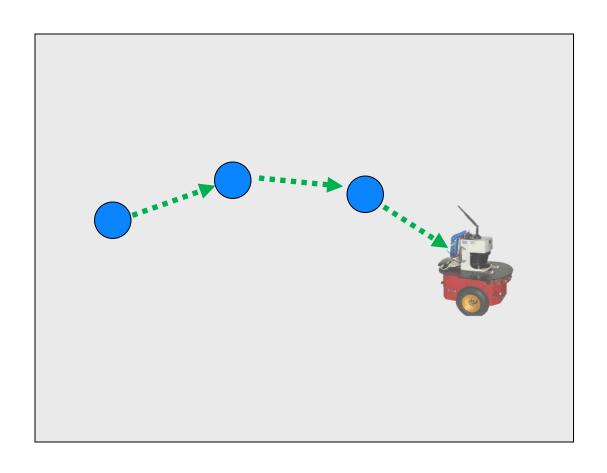
Workshop on Robust and Multimodal Inference in Factor Graphs

Pratik Agarwal, Gian Diego Tipaldi, Luciano Spinello, Cyrill Stachniss and Wolfram Burgard

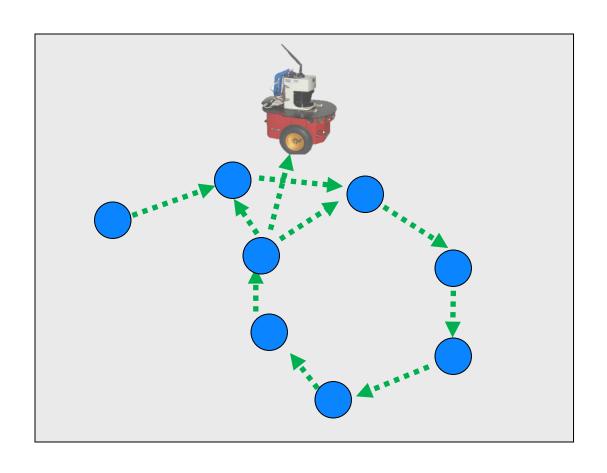
University of Freiburg, Germany

Maps are Essential for Effective Navigation

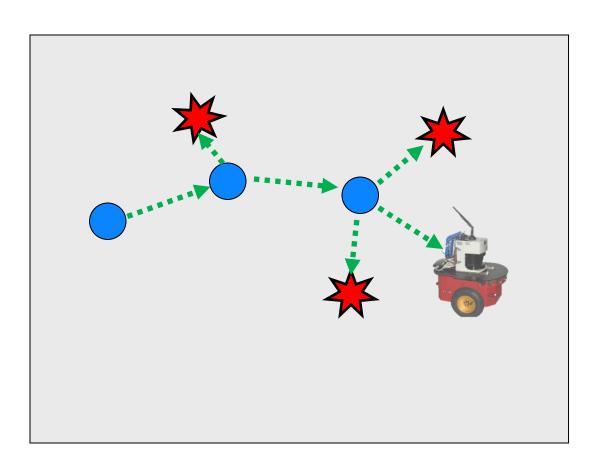


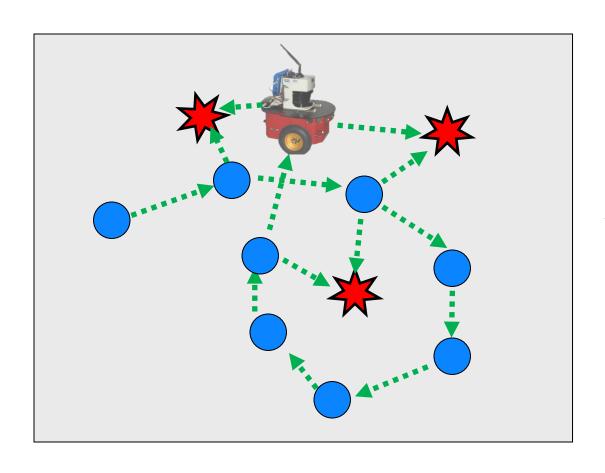


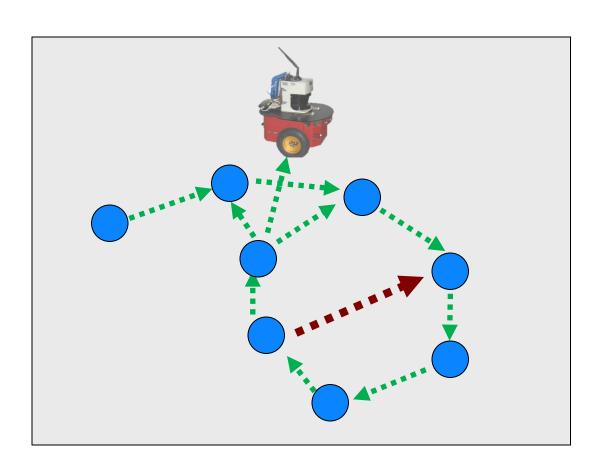
--- Constraint



--- Constraint



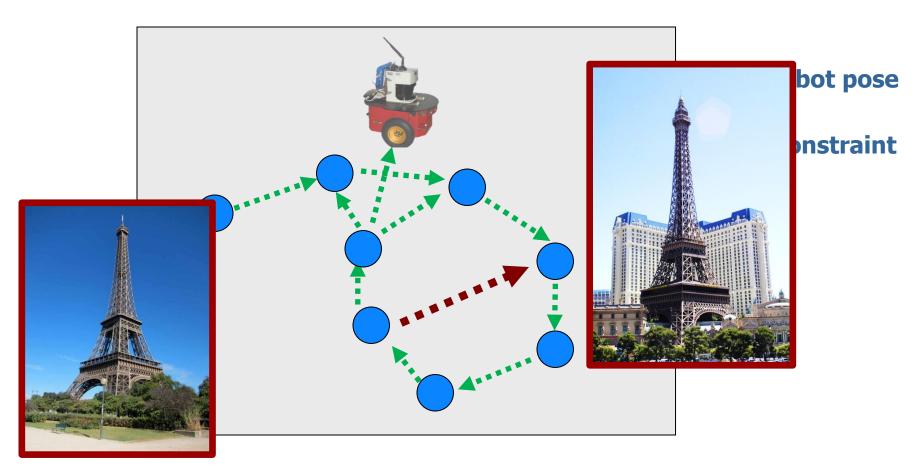




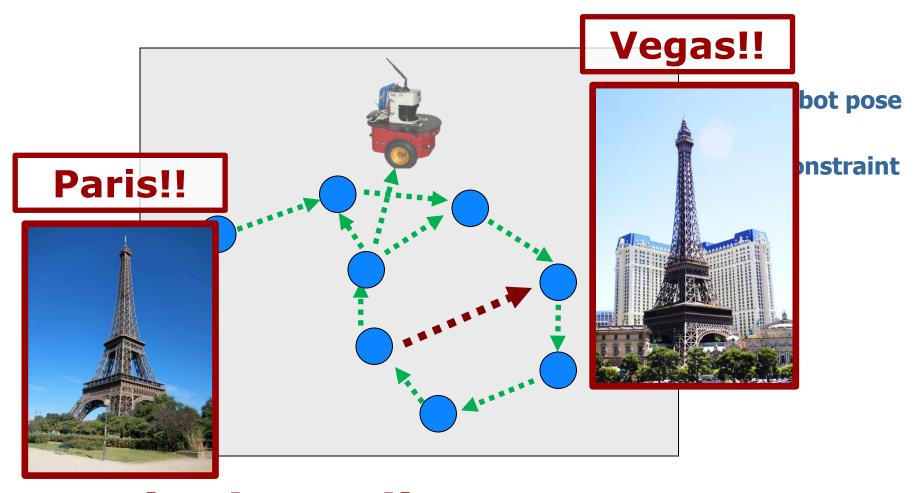
Robot pose

··· Constraint

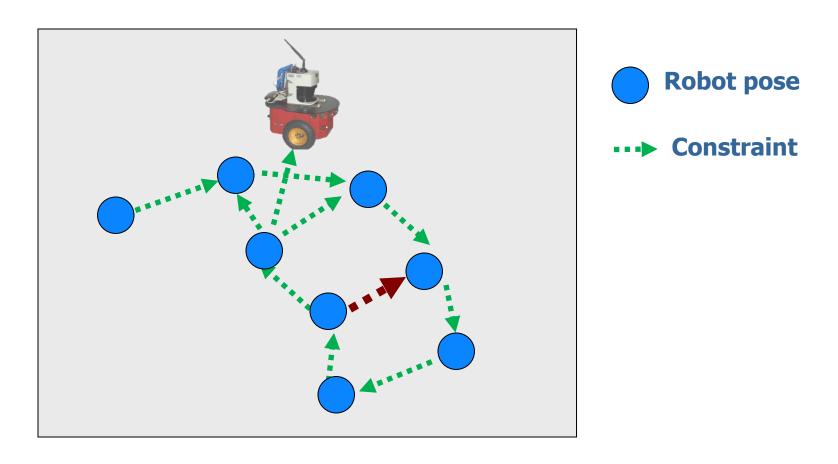
a single outlier ...



a single outlier ...

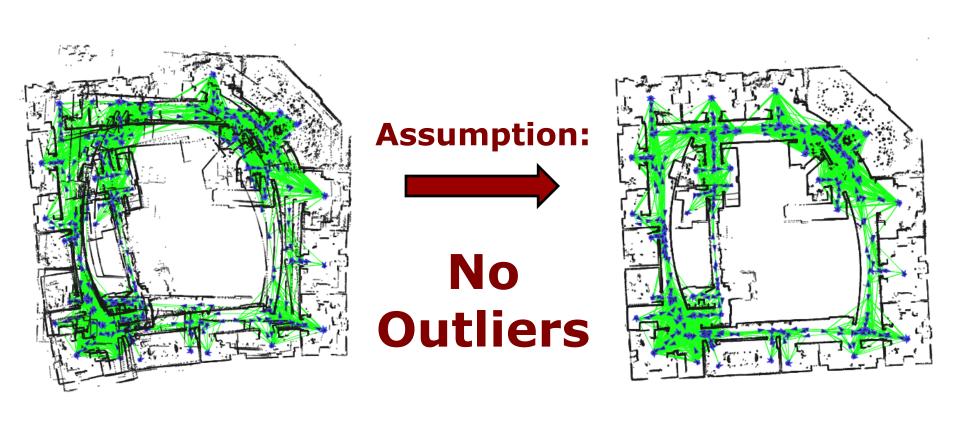


a single outlier ...



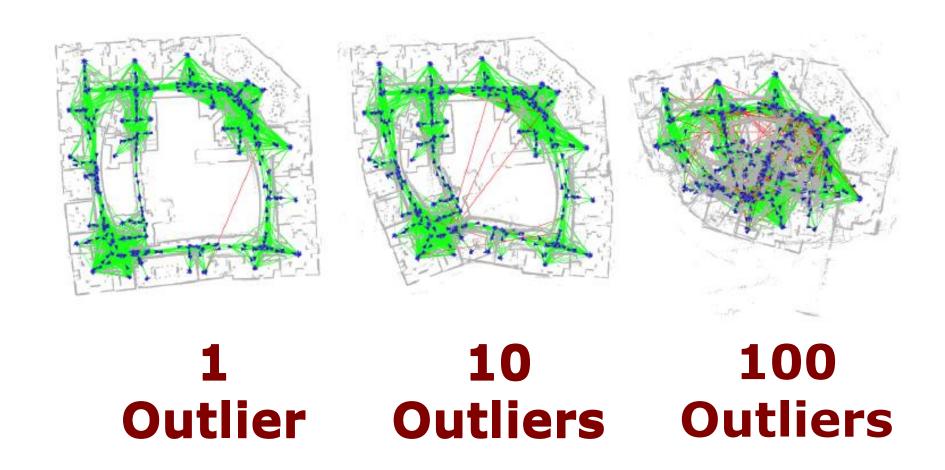
a single outlier ... ruins the map

Graph-SLAM Pipeline

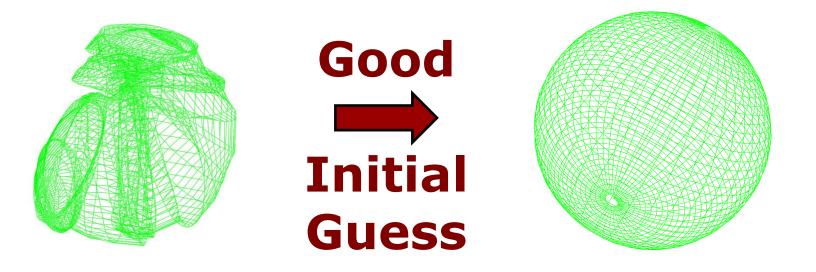


Impossible to have perfect validation

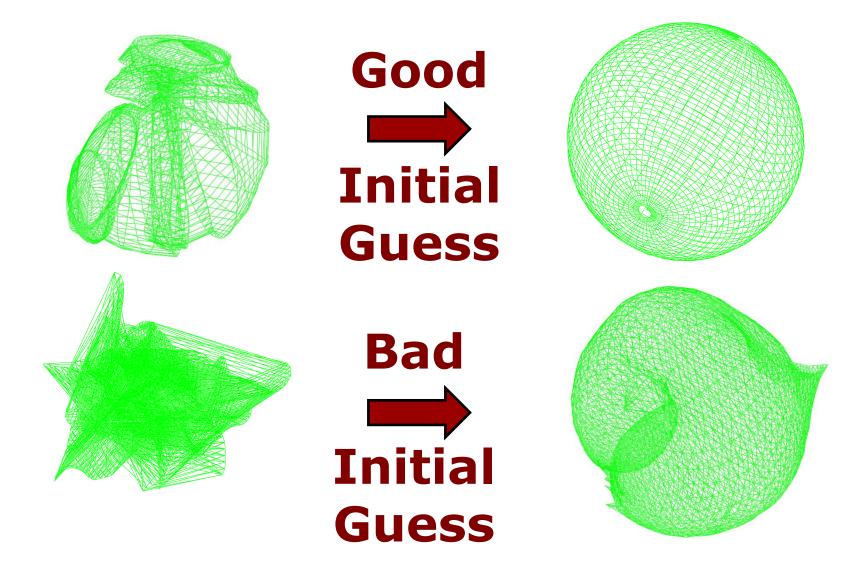
SLAM Back End Fails in the Presence of Outliers



SLAM Back End Depends on the Initial Guess



SLAM Back End Depends on the Initial Guess



Typical Assumptions

- Gaussian assumption is violated
 - Perceptual aliasing
 - Measurement error
 - Multipath GPS measurements

Typical Assumptions

- Gaussian assumption is violated
 - Perceptual aliasing
 - Measurement error
 - Multipath GPS measurements
- Linear approximation is invalid
 - Linearization is only valid if close to optimum

Typical Assumptions in Graph-SLAM

- No outliers
- Good initial guess
- Current methods both independently
- Our method approaches both problems

Typical Assumptions in Graph-SLAM

- No outliers
- Good initial guess
- Current methods solve both independently
- Our method approaches both problems

Our Approach

Our Approach: Dynamic Covariance Scaling

- Successfully rejects outliers
- More robust to bad initial guess
- Does not increase state space
- Is a robust M-estimator

Standard Gaussian Least Squares

$$X^* = \underset{X}{\operatorname{argmin}} \sum_{ij} \underbrace{\mathbf{e}_{ij}(X)^T \Omega_{ij} \mathbf{e}_{ij}(X)}_{\chi^2_{ij}}$$

$$X^* = \underset{X}{\operatorname{argmin}} \sum_{ij} \underbrace{\mathbf{e}_{ij}(X)^T \Omega_{ij} \mathbf{e}_{ij}(X)}_{\chi^2_{ij}}$$

$$X^* = \underset{X}{\operatorname{argmin}} \sum_{ij} \mathbf{e}_{ij} (X)^T \left(s_{ij}^2 \Omega_{ij} \right) \mathbf{e}_{ij} (X)$$

How to Determine s?

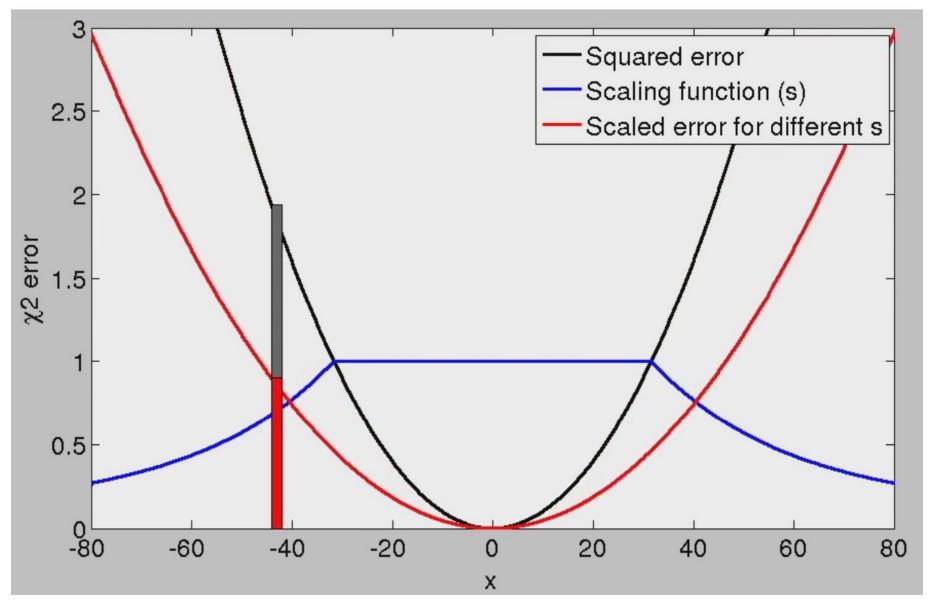
$$X^* = \underset{X}{\operatorname{argmin}} \sum_{ij} \mathbf{e}_{ij} (X)^T \left(s_{ij}^2 \Omega_{ij} \right) \mathbf{e}_{ij} (X)$$

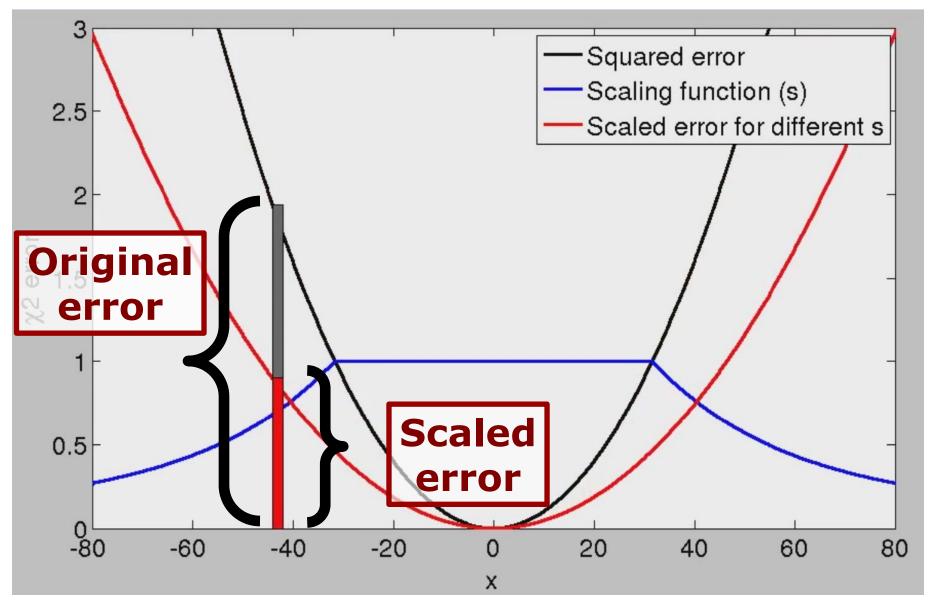
How to Determine s?

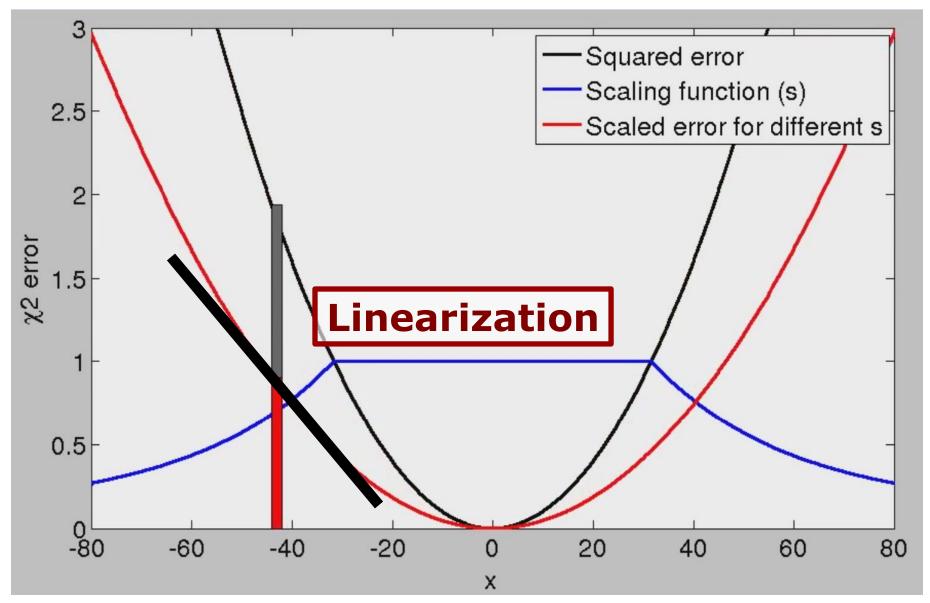
$$X^* = \underset{X}{\operatorname{argmin}} \sum_{ij} \mathbf{e}_{ij} (X)^T \left(s_{ij}^2 \Omega_{ij} \right) \mathbf{e}_{ij} (X)$$

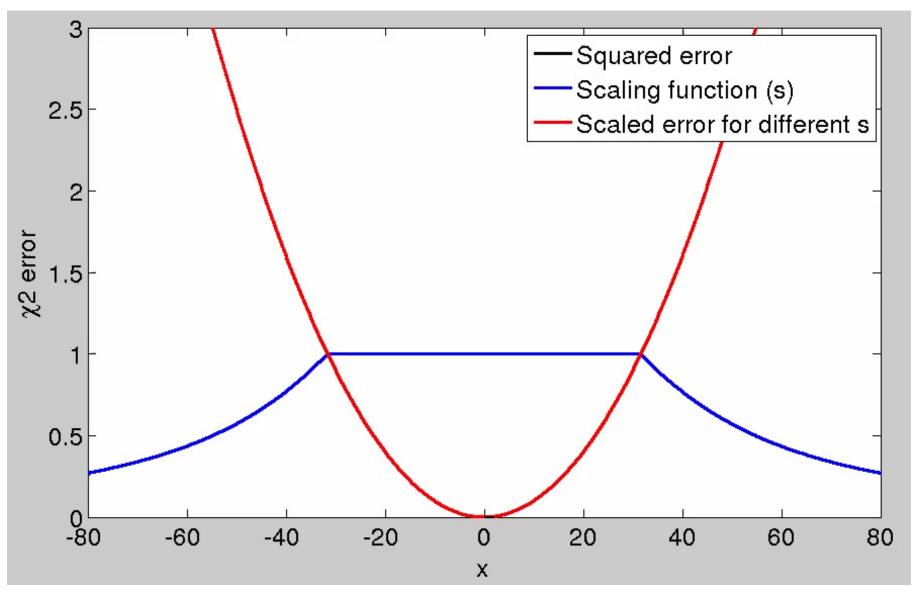
$$\Rightarrow s_{ij} = \min\left(1, \frac{2\Phi}{\Phi + \chi_{ij}^2}\right)$$

Closed form approximation of Switchable Constraints with a M-estimator





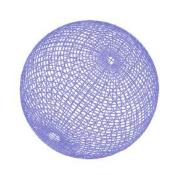


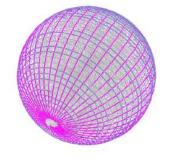


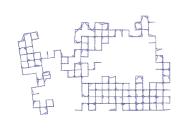
Sphere2500 (1000 Outiers) Manhattan3500 (1000 Outiers) Ground Truth

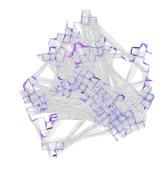
Initialization

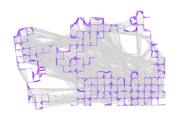
Gauss Newton Our Method



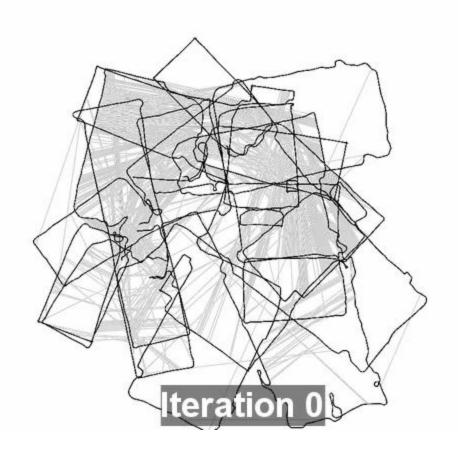


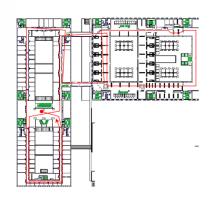






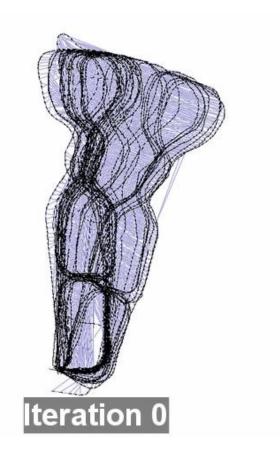
Dynamic Covariance Scaling with Front-end Outliers



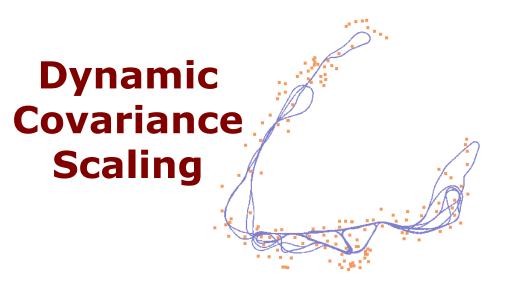


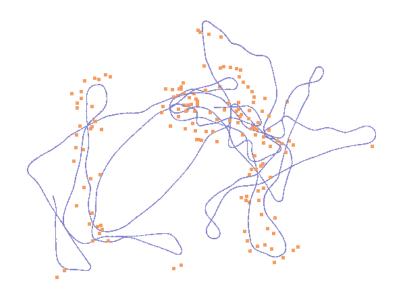
Bicocca multisession dataset

Dynamic Covariance Scaling with Front-end Outliers

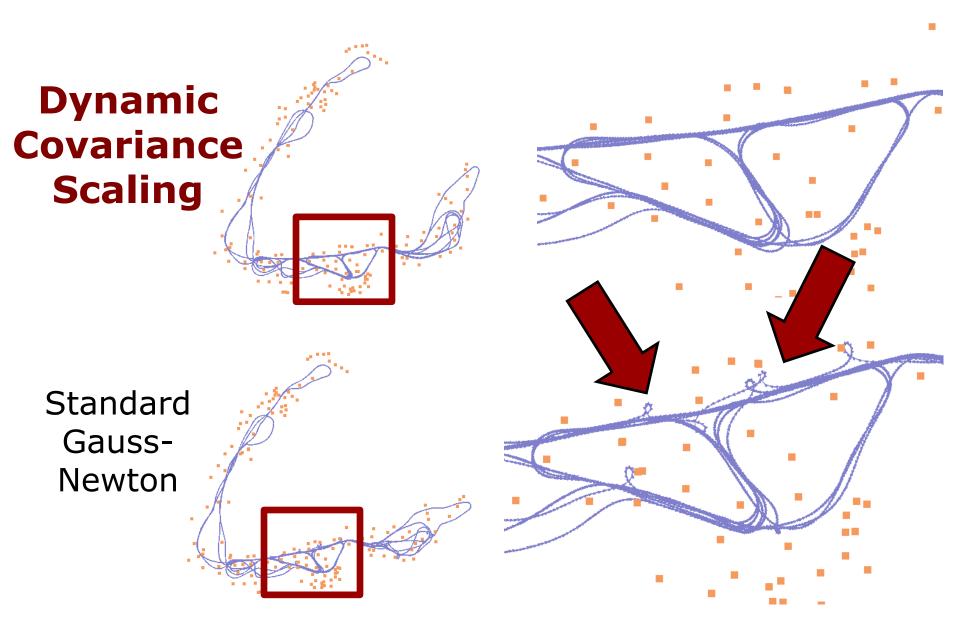


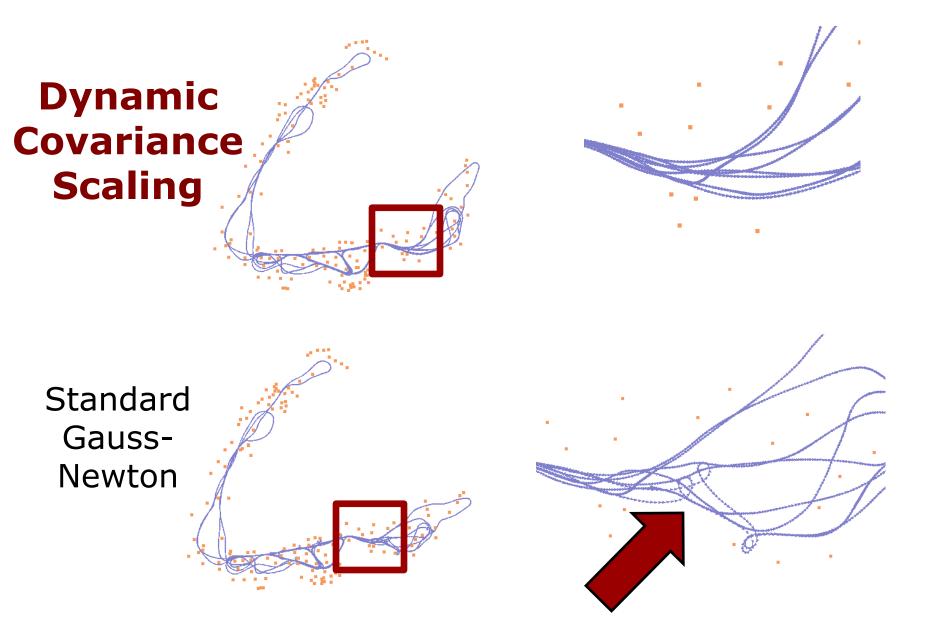
Lincoln-labs multisession dataset



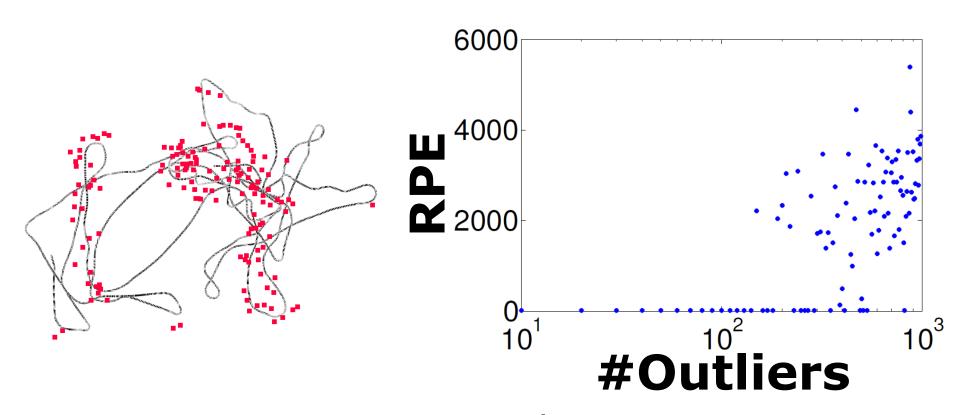


Victoria Park Initialization (Odometry)





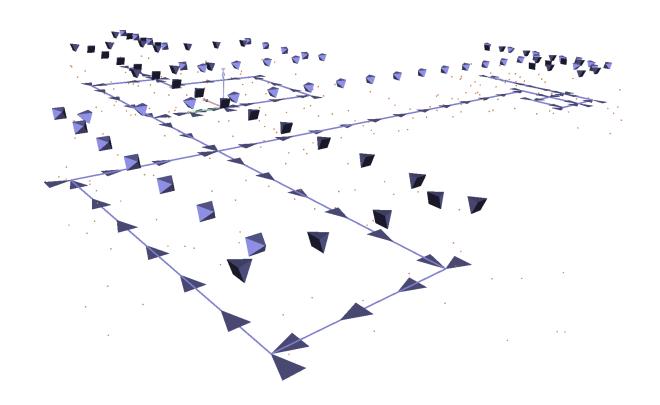
Dynamic Covariance Scaling with Outliers in Victoria Park



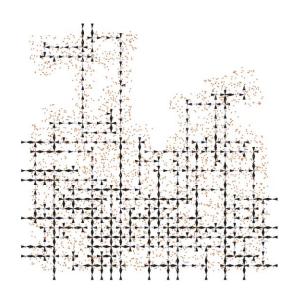
- DCS recovers correct solution
- GN fails to converge to the correct solution even for outlier-free case

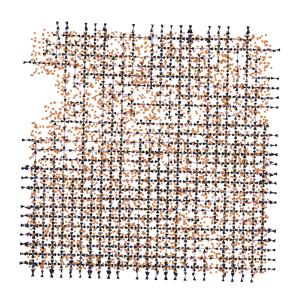
Robust Visual SLAM with Our Method

- 3D grid worlds of different sizes
- Robot perceives point landmarks



Robust Visual SLAM with Our Method





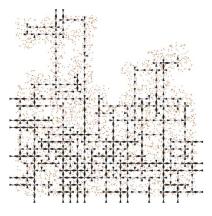
- ~1000 camera poses
- ~4000 features
- ~20K constraints

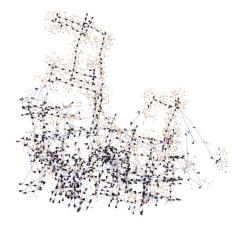
- ~5000 camera poses
- ~5000 features
- ~100K constraints

Robust Visual SLAM with DCS

Simulated Stereo (Bad initial guess)

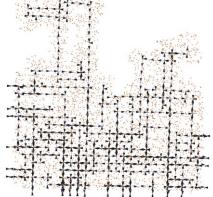
Ground Truth





Levenberg-Marquardt (100 iterations)

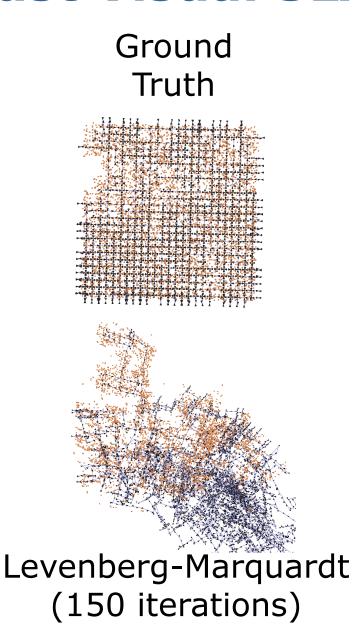
Initialization (Odometry)



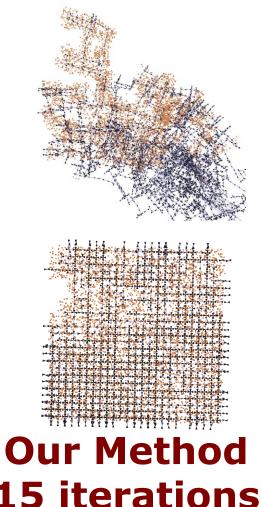
Our Method (15 iterations)

Robust Visual SLAM with DCS

Stereo guess) Simulated (Bad initial

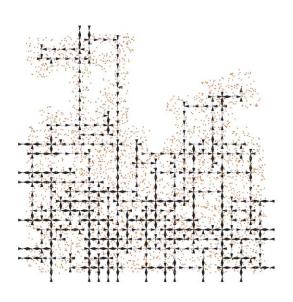


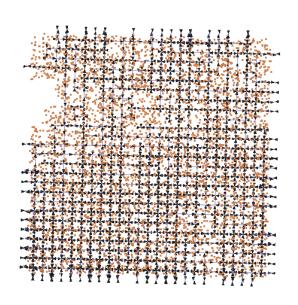
Initialization (Odometry)



(15 iterations)

Robust Visual SLAM with DCS



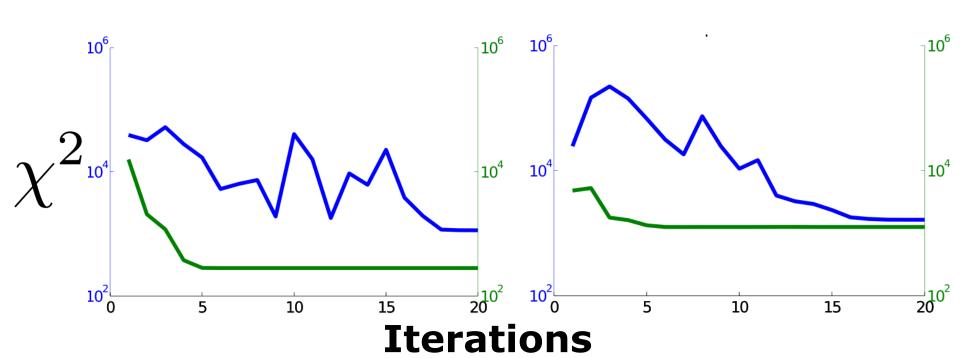


- DCS recovers correct solution in the presence of up to 25% outliers
- LM fails to converge to the correct solution even for outlier-free cases

Convergence – 1000 Outliers

Switchable ConstraintsDynamic Covariance Scaling

Sphere2500

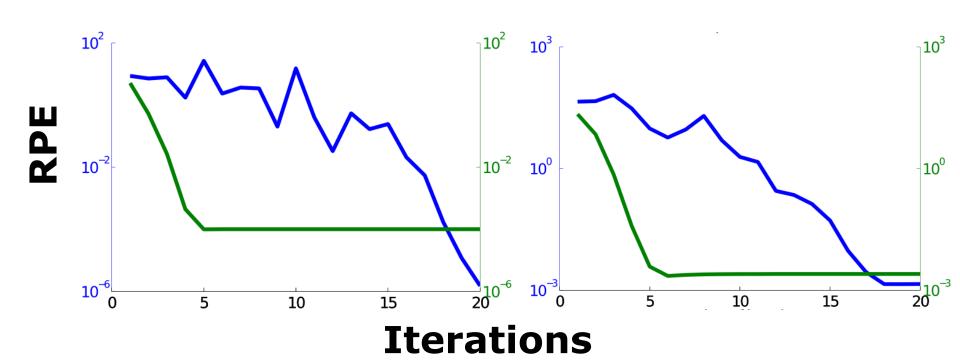


Convergence – 1000 Outliers

Switchable ConstraintsDynamic Covariance Scaling

Manhattan3500

Sphere2500



Convergence with Outliers

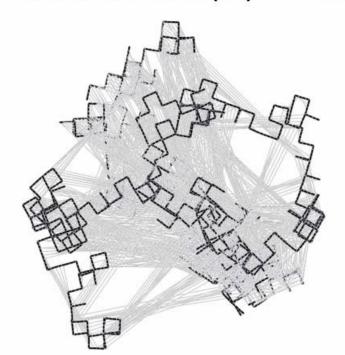
Switchable Constraints

Dynamic Covariance Scaling

Switchable Constraints (SC)

ManhattanOlson

Dynamic Covariance Scaling (DCS)





Iteration 0

Conclusion

- Rejects outliers for 2D & 3D SLAM
- No increase in computational complexity
- More robust to bad initial guess
- Now integrated in g2o

Thank you for your attention!

Open Discussion:

- Best way to compare?
 - Keep outliers/null hypothesis for DCS, SC, MM?
- Standard for outlier datasets
 - Real, simulated
- Online or batch?
- Initialization
 - Odometry
 - Minimum Spanning Tree

Questions?

