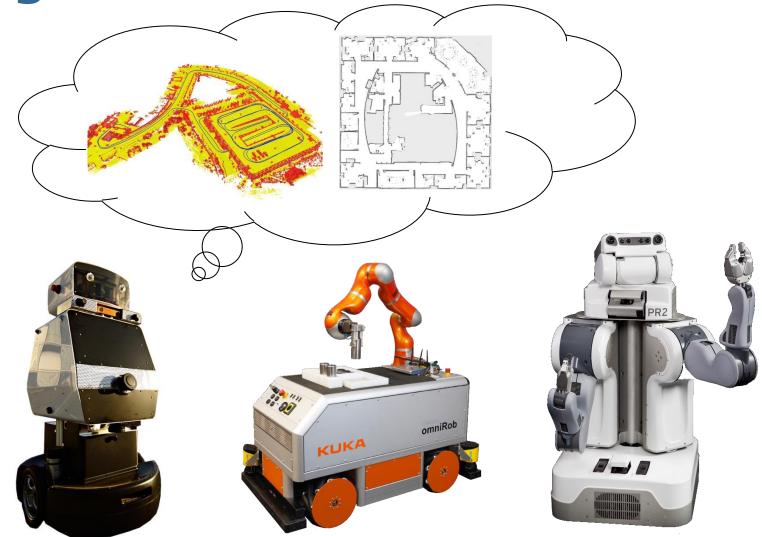
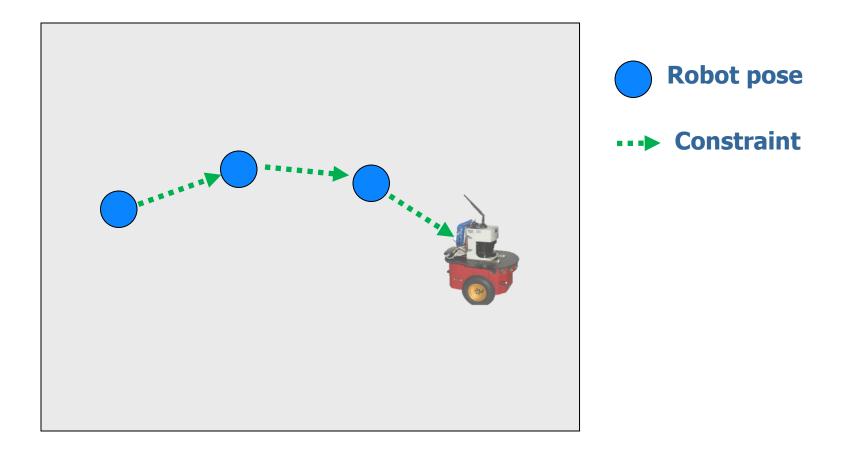


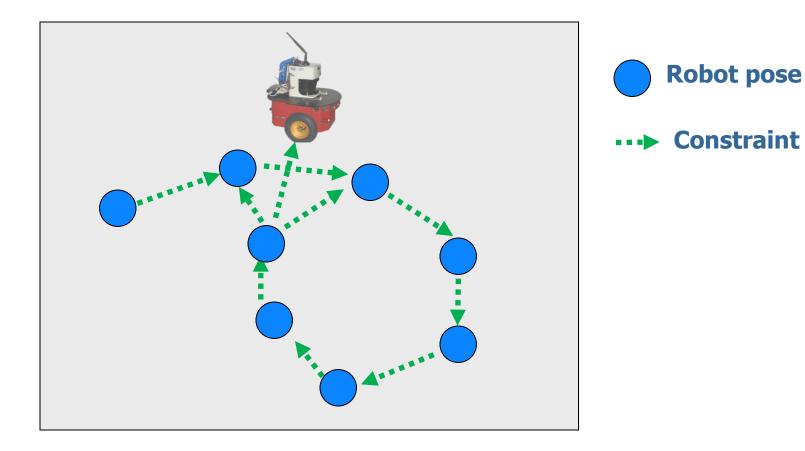
Robot Map Optimization using Dynamic Covariance Scaling

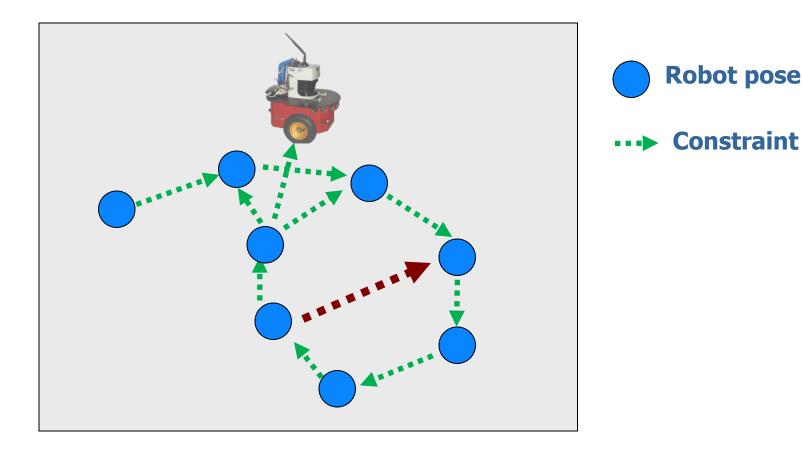
Pratik Agarwal, Gian Diego Tipaldi, Luciano Spinello, Cyrill Stachniss and Wolfram Burgard University of Freiburg, Germany

Maps are Essential for Effective Navigation

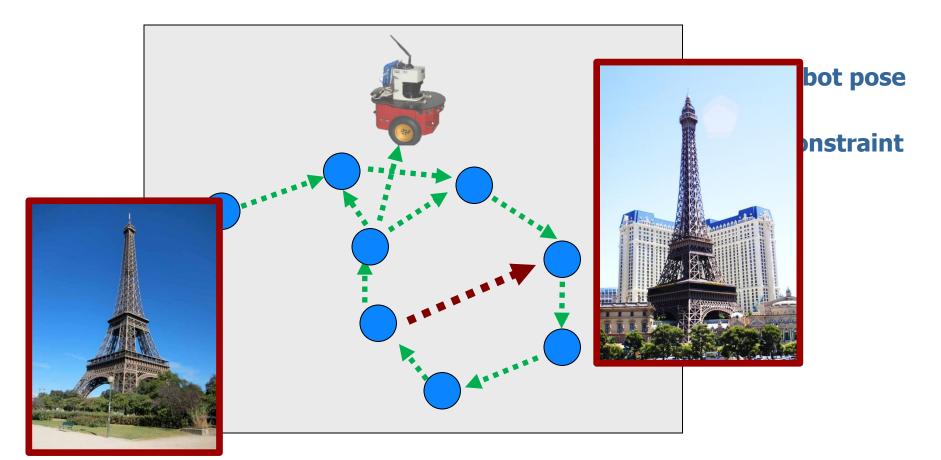




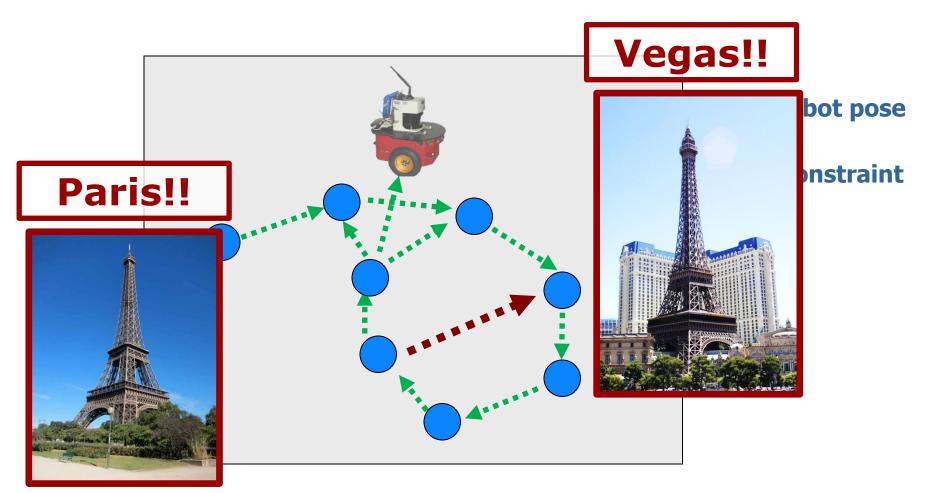




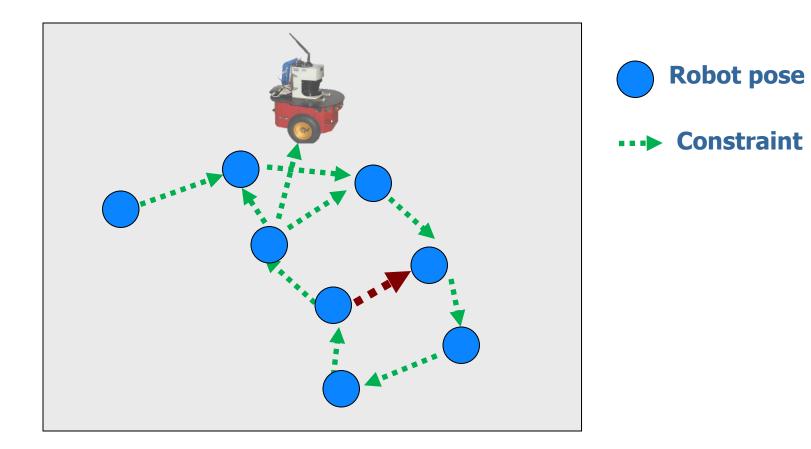
a single outlier ...



a single outlier ...

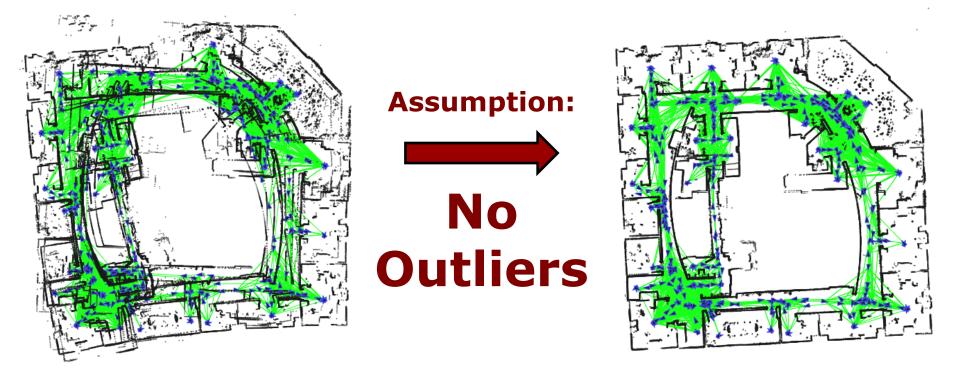


a single outlier ...



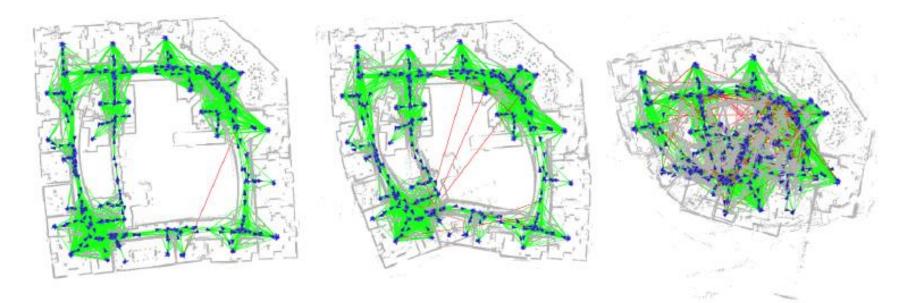
a single outlier ... ruins the map

Graph-SLAM Pipeline



Impossible to have perfect validation

SLAM Back End Fail in the Presence of Outliers



1 Outlier

10 Outliers

100 Outliers

Why does the Mapping Fail?

- Gaussian assumption is violated
- Perceptual aliasing
- Measurement error
- Multipath GPS measurements

Why does the Mapping Fail?

- Gaussian assumption is violated
- Perceptual aliasing
- Measurement error
- Multipath GPS measurements

Alternative

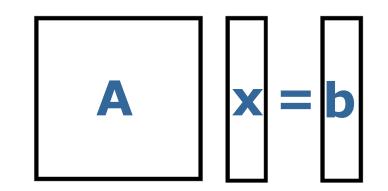
Let the back end do the validation job!

Switchable Constraints

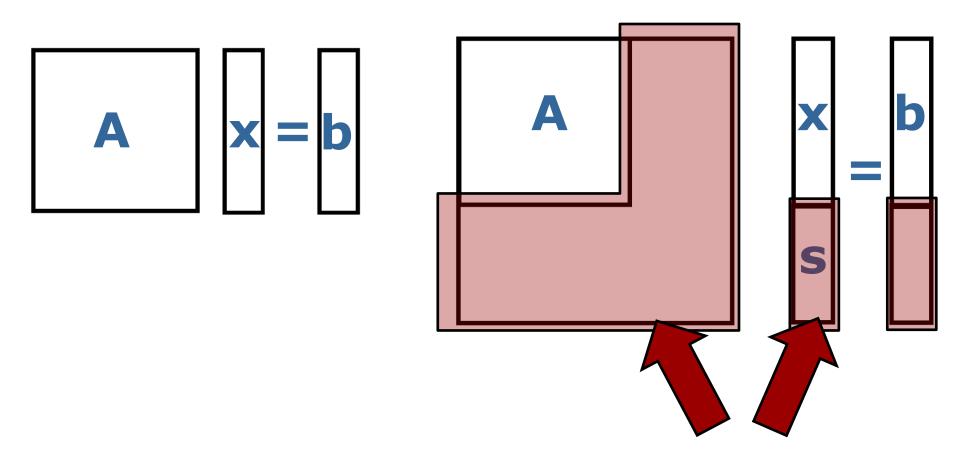
- Recent approach by Sünderhauf and Protzel
- Allows to switch off "bad" constraints
- Requires a switch-variable per constraint
- Additional switch-constraint per switch
- Robust optimization in case of outliers but increased computational complexity

[Sünderhauf and Protzel, IROS 2012]

Standard Optimization



Switchable Constraints



- Additional switch-variable per constraint
- Additional switch-constraint per switch

Our Approach: Dynamic Covariance Scaling

- Switch variables computed in closed form
- Does not increase state space
- Approximates Switchable Constraints
- Is a robust M-estimator
- Successfully rejects outliers

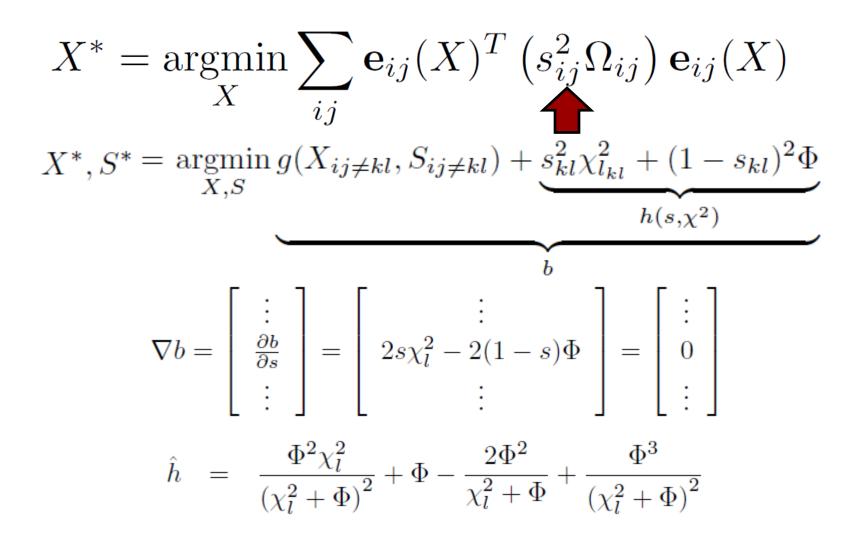
Standard Gaussian Least Squares

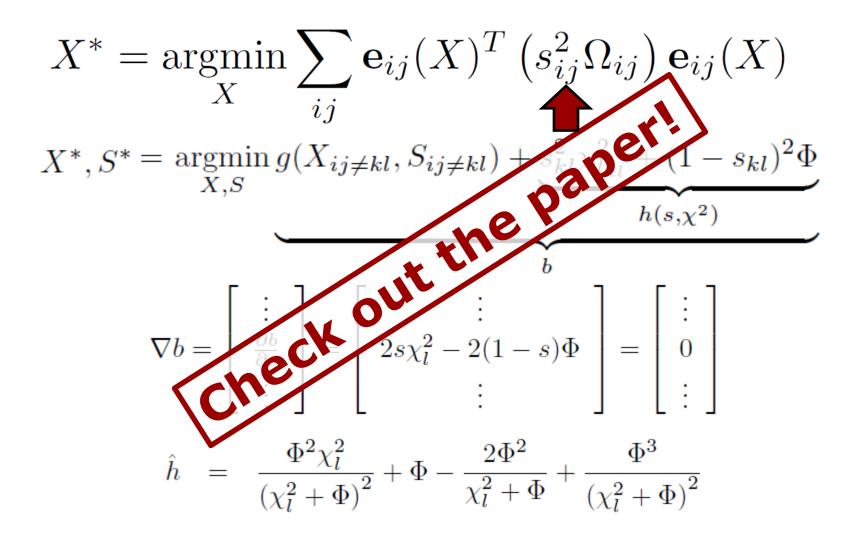
 $X^* = \underset{X}{\operatorname{argmin}} \sum_{ij} \underbrace{\mathbf{e}_{ij}(X)^T \Omega_{ij} \mathbf{e}_{ij}(X)}_{\chi^2_{ij}}$

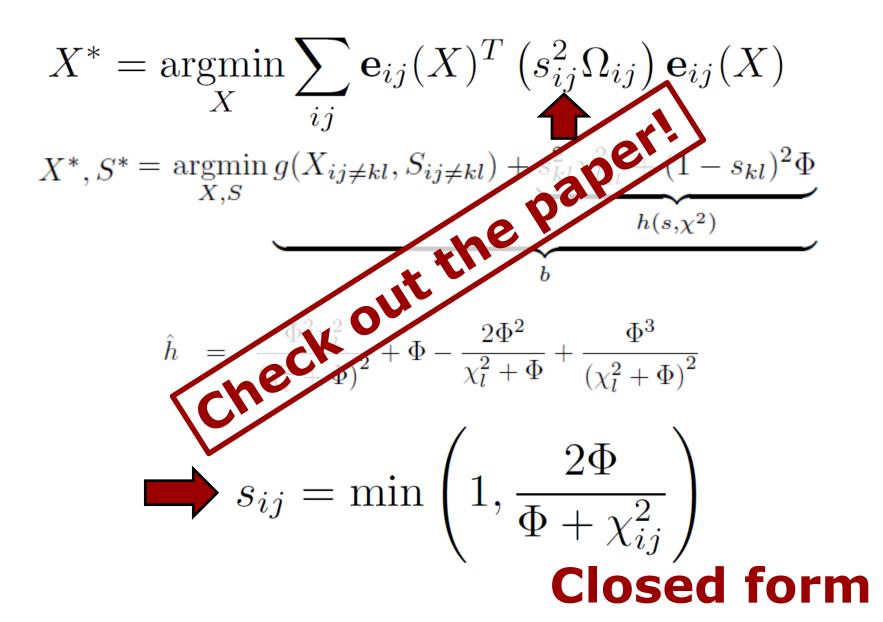
 $X^* = \underset{X}{\operatorname{argmin}} \sum_{ij} \underbrace{\mathbf{e}_{ij}(X)^T \Omega_{ij} \mathbf{e}_{ij}(X)}_{\mathcal{O}_{ij}}$ χ^2_{ii}

 $X^* = \underset{X}{\operatorname{argmin}} \sum_{ij} \mathbf{e}_{ij} (X)^T \left(s_{ij}^2 \Omega_{ij} \right) \mathbf{e}_{ij} (X)$

 $X^* = \underset{X}{\operatorname{argmin}} \sum_{ij} \mathbf{e}_{ij} (X)^T \left(s_{ij}^2 \Omega_{ij} \right) \mathbf{e}_{ij} (X)$



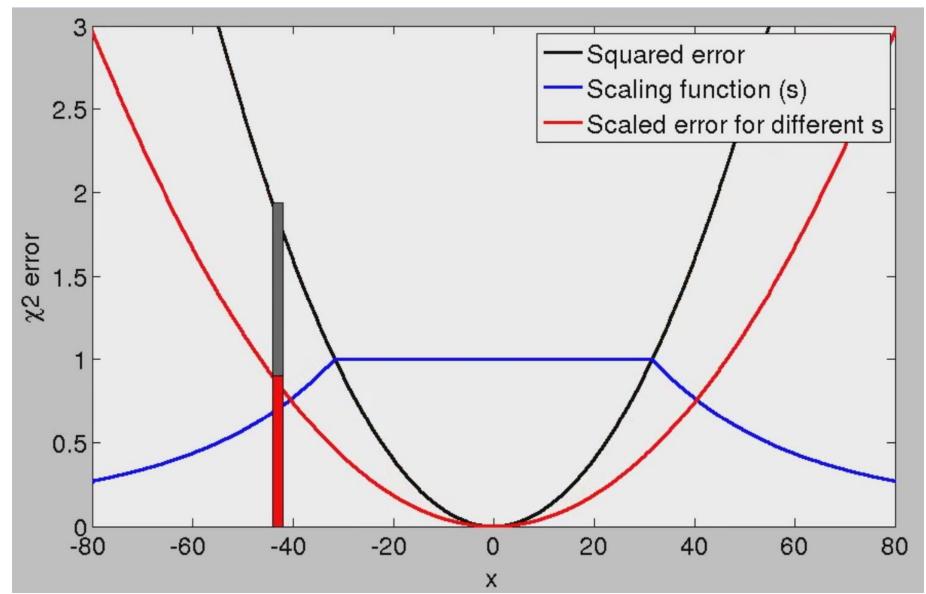


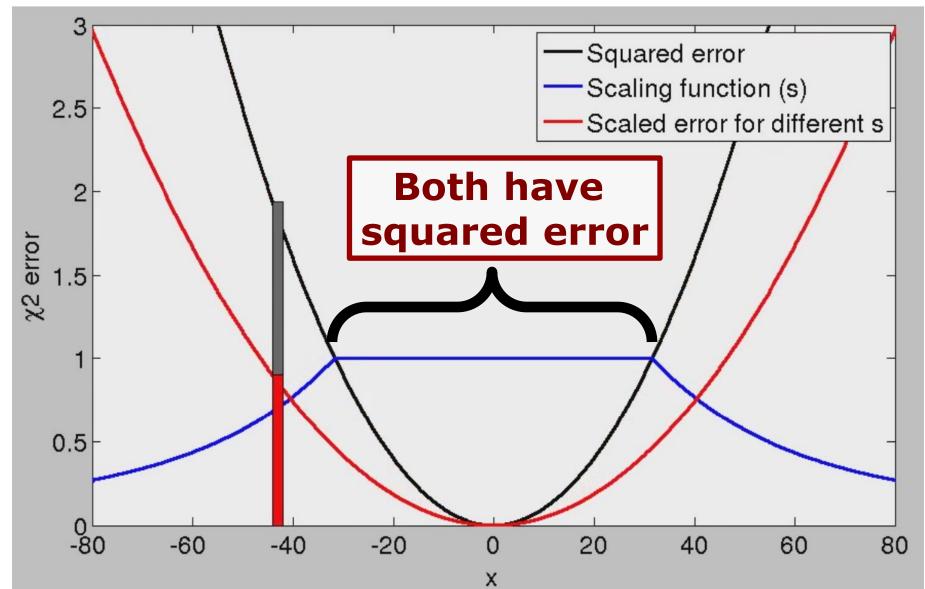


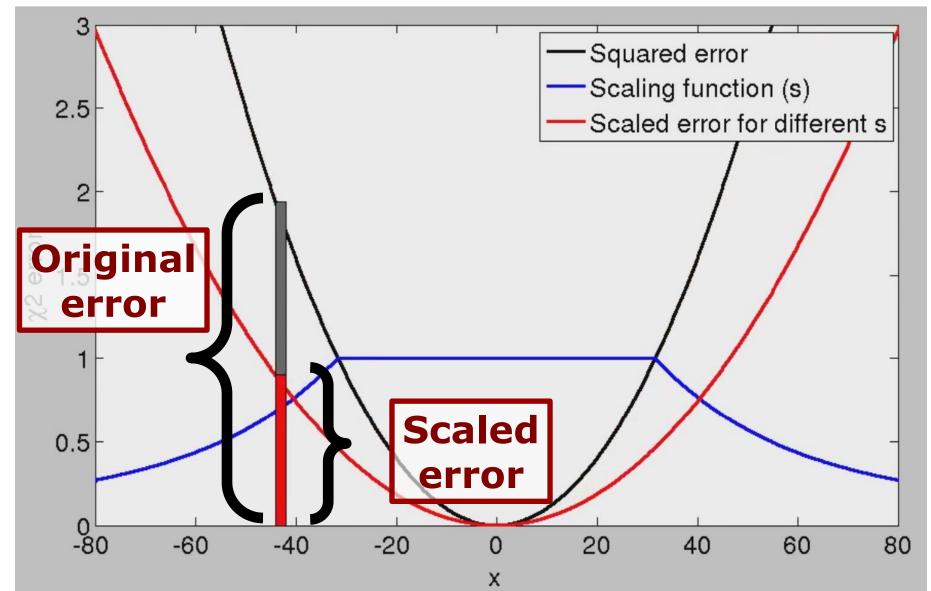
$$X^* = \underset{X}{\operatorname{argmin}} \sum_{ij} \mathbf{e}_{ij} (X)^T \left(s_{ij}^2 \Omega_{ij} \right) \mathbf{e}_{ij} (X)$$

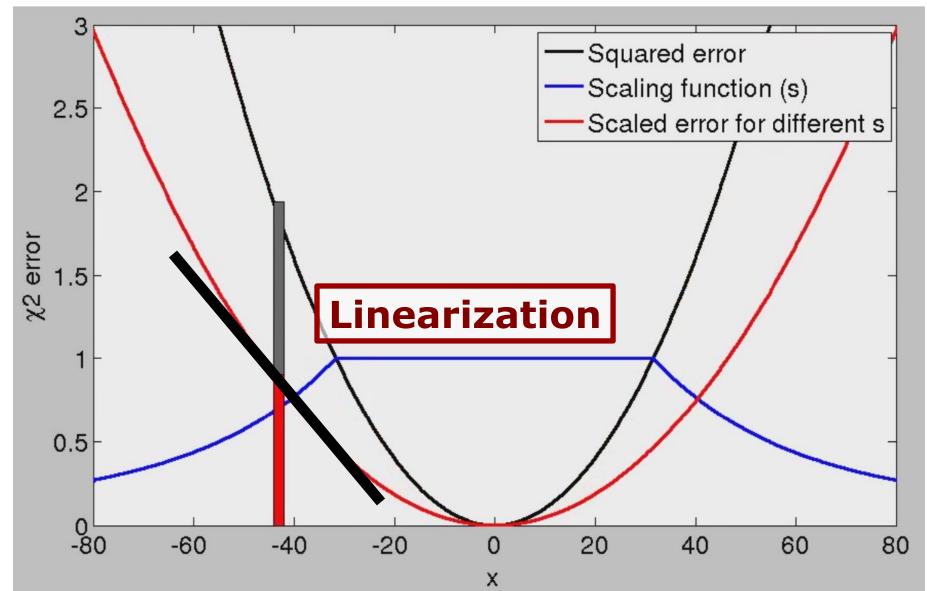
$$\Rightarrow s_{ij} = \min\left(1, \frac{2\Phi}{\Phi + \chi_{ij}^2}\right)$$

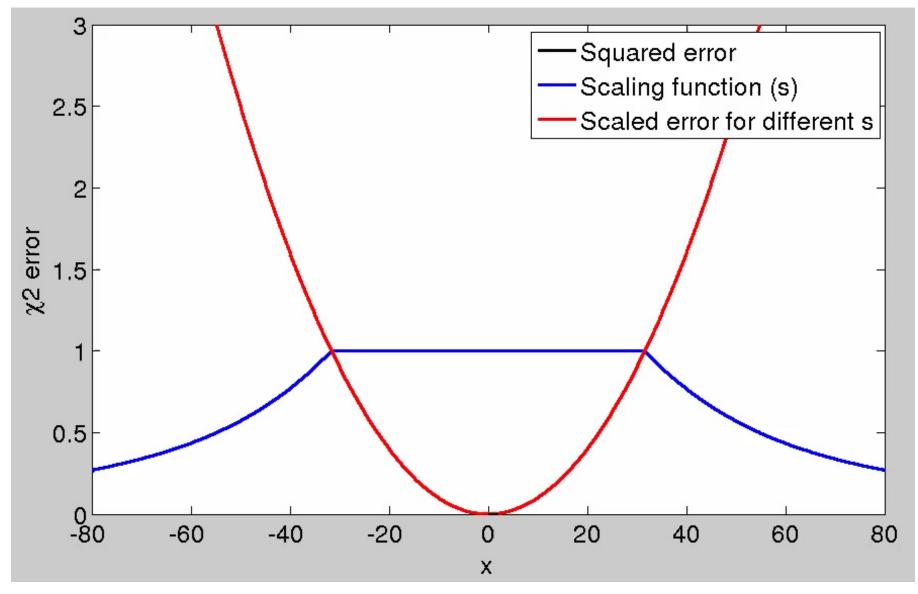
Closed form



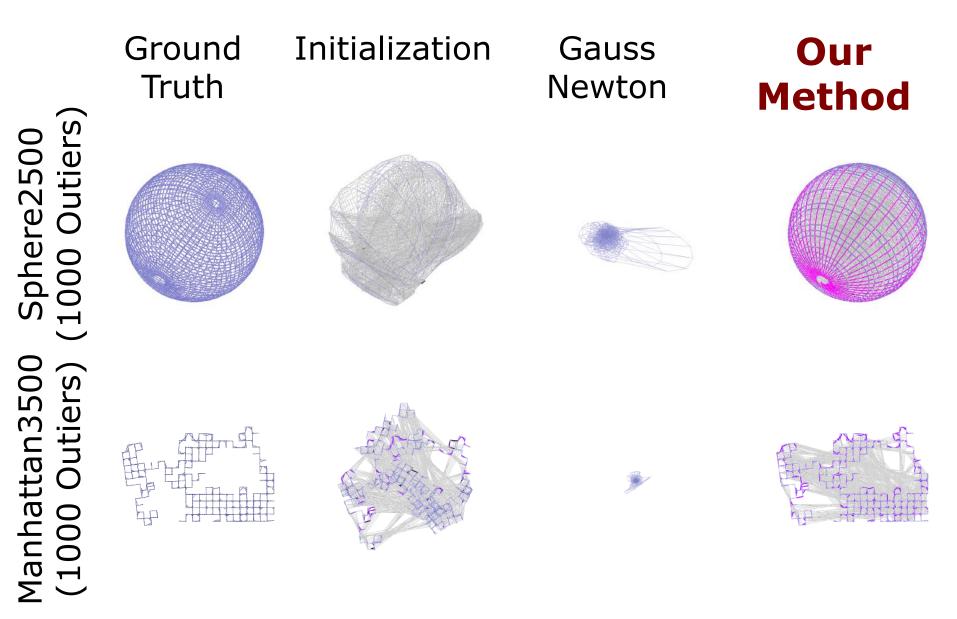




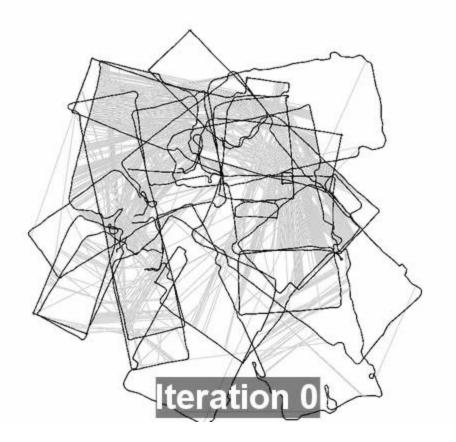


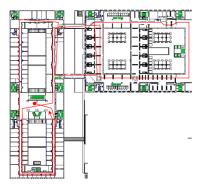


Robust SLAM with Our Method



Dynamic Covariance Scaling with Front-end Outliers





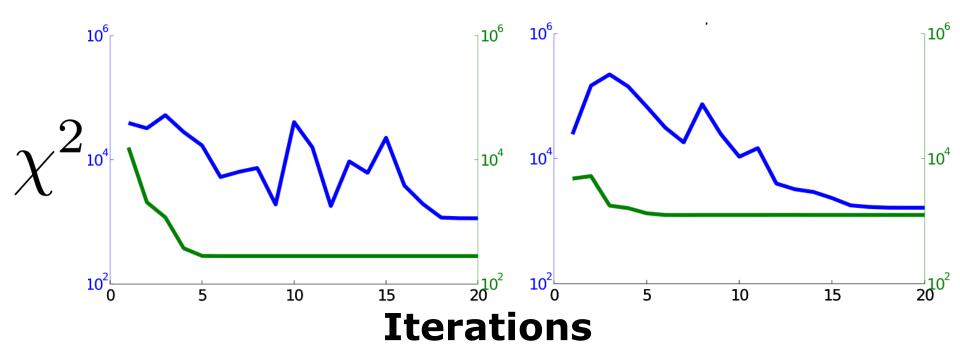
Bicocca-multisession dataset

Convergence – 1000 Outliers

Switchable Constraints Dynamic Covariance Scaling

Manhattan3500

Sphere2500

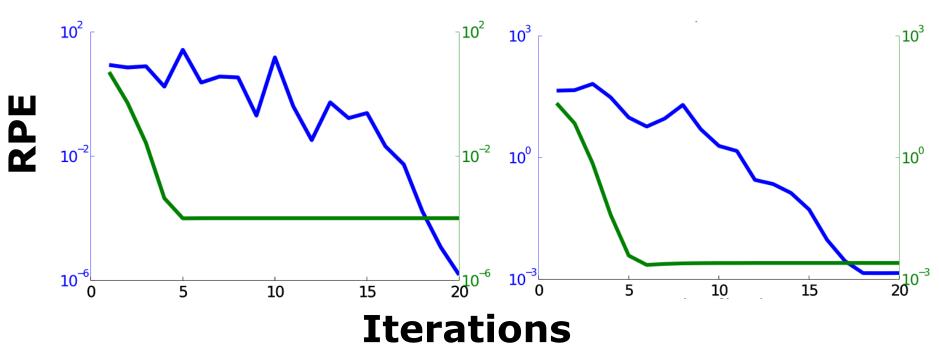


Convergence – 1000 Outliers

Switchable Constraints Dynamic Covariance Scaling

Manhattan3500

Sphere2500

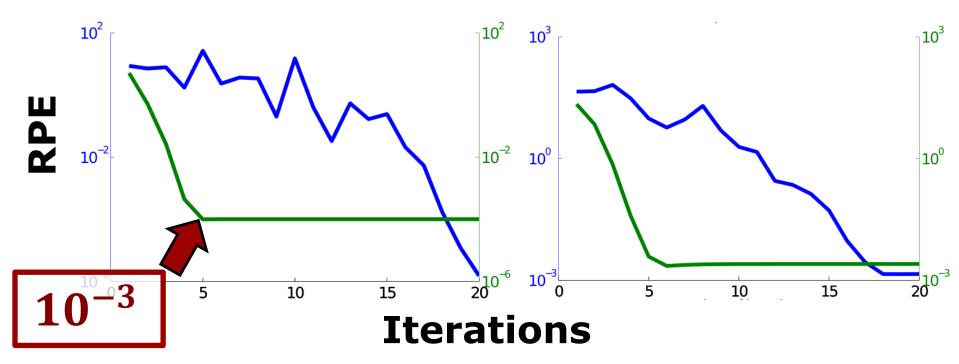


Convergence – 1000 Outliers

Switchable Constraints Dynamic Covariance Scaling

Manhattan3500

Sphere2500



Convergence with Outliers

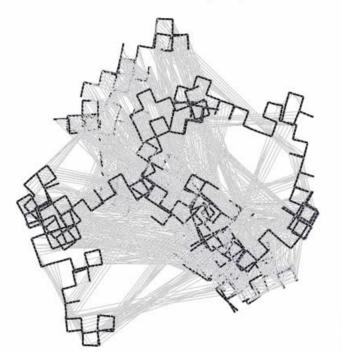
Switchable Constraints

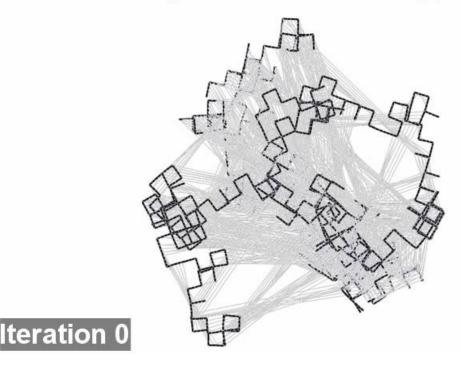
Dynamic Covariance Scaling

Switchable Constraints (SC)

ManhattanOlson

Dynamic Covariance Scaling (DCS)





Conclusion

- Rejects outliers for 2D & 3D SLAM
- No increase in computational complexity
- Approximates switchable constraints with a robust M-estimator
- Now integrated in g2o

Thank you for your attention!

Questions?

