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Abstract— Acquiring models of the environment belongs to
the fundamental tasks of mobile robots. Approaches addressing
the problem of simultaneous localization and mapping (SLAM)
typically process the perceived sensor data and do not influence
the motion of the mobile robot. In this paper, we present an
approach to actively closing loops during exploration. It applies a
Rao-Blackwellized particle filter to maintain multiple hypotheses
about potential trajectories of the robot and corresponding maps.
To prevent the particle filter from becoming overly confident,
we present a technique to recover the particle diversity after
successfully closing a loop. This way the particle depletion
problem is avoided. The combination of our approach with the
active loop closing strategy allows to deal with multiple nested
loops. Experimental results presented in this paper illustrate the
advantage of our method over pervious approaches to mapping
with Rao-Blackwellized particle filters.

I. INTRODUCTION

Simultaneous localization and mapping belongs to one of
the fundamental problems in mobile robotics. Robots that are
able to concurrently aquire a model of their environment and
to localize themselves relatively to this model are regarded
as fulfilling a major precondition of truly autonomous mobile
vehicles. Recently, Rao-Blackwellized particle filters (RBPF)
have been introduced as an effective means for solving the
SLAM problem with occupancy grid maps [4, 17]. The key
idea of this technique is to use a particle filter in which
each particle carries its own map. The individual maps are
computed based on the trajectory of the corresponding particle.

Whenever robots build maps of unknown terrain au-
tonomously, the question arises where to move next to ac-
quire useful sensor data. As we demonstrated in a previous
work [19], the quality of a map constructed by a mobile robot
depends on its trajectory during data acquisition. This is typi-
cally due to the fact that the vehicle needs to re-localize itself
during exploration to build an accurate environmental model.
A good pose estimation is necessary to make the correct data
association, i.e., to determine if the current measurement fits
into the map built so far. Avoiding repeated visits of the
same place reduces the probability of making correct data
associations and therefore increases the risk that the filter does
not converge to the correct solution. Therefore, exploration
strategies, which always guide the robot to unknown areas,
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Fig. 1. This figure illustrates that a loss of particle diversity introduced by
repeated loop closing can lead to a wrong solution in the context of mapping
with a Rao-Blackwellized particle filter.

perform typically worse compared to a system considering
place re-visiting actions.

However, especially if a Rao-Blackwellized particle filter is
used to solve the SLAM problem, re-visiting known areas can
be problematic. Consider, for example, a robot that moves
from place A to place B and then repeatedly observes B.
While it is mapping B it does not get any further information
about A. Since each particle represents a whole trajectory of
the robot, also hypotheses representing ambiguities about A
will vanish while reducing potential uncertainties about B. The
loss of uncertainty about A can later result in filter divergence
if the robot returns to A. In practice, such situations occur
when the robot has to map environments with nested loops.
If the vehicle repeatedly traverses an inner loop, it can lose
particles that are necessary to correctly close an outer loop
(see Figure 1, for example). This phenomenon is known as
the particle depletion problem [21].

In this paper, we consider the problem of actively closing
loops during exploration. In our recent work [19], the robot
is able to detect loops and to actively follow the previously
traversed path to reduce its pose uncertainty. Whereas this
approach has been demonstrated to be very effective and to
yield accurate maps, its major drawback lies in the heuristic
stopping criterion that aborts the loop closing process. Due
to the risk of particle depletion, the robot should spend only
a limited amount of time in an inner loop and has to leave
an inner loop whenever the uncertainty drops below a certain
threshold computed from the uncertainty when it entered the
loop [19].

The contribution of this paper is a new technique to recover
the uncertainty of the Rao-Blackwellized particle filter in



the context of nested loops. Our approach determines an
approximation of the posterior represented by the particles at
the entry of a loop and propagates its uncertainty through the
loop. This way, hypotheses needed to close an outer loop are
maintained. The major advantage of this approach is that the
robot can, in principle, stay arbitrary long in an inner loop
without losing information necessary to close outer loops.

This paper is organized as follows. After the discussion
of related work, we explain the idea of Rao-Blackwellized
mapping in Section III. Section IV presents our exploration
technique with active loop closing. Section V then describes
how to recover the diversity of a particle filter when the robot
leaves a loop. Finally, Section VI contains experimental results
carried out on real robots as well as in simulation.

II. RELATED WORK

In the context of exploration, many techniques presented
so far focus on generating motion commands that minimize
the time needed to cover the whole terrain [2, 11, 22].
Most of these approaches, however, assume that an accurate
position estimation of the robot is given during exploration.
In contrast to this, Ko et al. [10] presented a multi-robot
exploration system based on a mapping technique similar to
that of Gutmann and Konolige [7] which is able to deal with
unknown relative start locations of the robots. In contrast to
our approach, their robots consider rendezvous instead of place
re-visiting actions to re-localize.

In the area of SLAM, the vast majority of papers has
focused on the aspect of state estimation as well as belief
representation and update [3, 6, 4, 5, 7, 8, 16, 17, 20]. These
techniques, however, are passive and only process incoming
sensor data without explicitely generating control commands.
Recently, some techniques have been proposed which actively
control the robot during SLAM. For example, Makarenko et
al. [15] introduced an utility function which trades-off the cost
of exploring new terrain with the utility of selected positions
with respect to a potential reduction of the pose uncertainty.
Sim et al. [18] presented an approach in which the robot
follows a parametric curve to explore the environment. Both
techniques integrate the pose uncertainty into the decision
process of where to move next. However, they rely on the fact
that the environment contains landmarks that can be uniquely
determined during mapping. In contrast to this, our approach
makes no assumptions about distinguishable landmarks and
uses raw laser range scans to compute accurate grid maps.

Only very few works address the problem of revoking
a previously made decision in the SLAM context. Hähnel
et al. [9] maintain a data association tree in which each
branch represents a sequence of associations. Whenever a
branch becomes more likely than the current best one their
approach switches to the alternative data association sequence.
Their work can be regarded orthogonal to our technique for
recovering the uncertainty of a particle filter. In fact, both
approaches can be combined.

Our approach presented here extends our previous work [19]
and presents a way to recover particle diversity when apply-

ing a Rao-Blackwellized particle filter to solve the SLAM
problem. Our algorithm enhances the ability to correctly close
loops, especially, in the context of nested loops.

III. RAO-BLACKWELLIZED MAPPING

According to Murphy [17], the key idea of solving the
SLAM problem with a Rao-Blackwellized particle filter
(RBPF) is to estimate a posterior p(x1:t | z1:t, u0:t−1) about
potential trajectories x1:t of the robot given its observations
z1:t and its odometry measurements u0:t−1. This distribution
is then used to compute a posterior over maps and trajectories:

p(x1:t,m | z1:t, u0:t−1) =

p(m | x1:t, z1:t)p(x1:t | z1:t, u0:t−1) (1)

Eq. (1) can be solved efficiently, since the quantity p(m |
x1:t, z1:t) can be computed analytically once x1:t and z1:t are
known. To estimate p(x1:t | z1:t, u0:t−1) over the potential
trajectories, Rao-Blackwellized mapping uses a particle filter
in which an individual map is associated to each sample.
Each of those maps are constructed given the observations
z1:t and the trajectory x1:t represented by the corresponding
particle. During resampling, the weight ω of each particle is
proportional to the likelihood p(zt | m,xt) of the most recent
observation zt given the map m associated to this particle and
its pose xt. Throughout this paper we use a highly optimized
variant of the original algorithm for mapping with RBPFs.
An efficient implementation is necessary due to the online
requirement needed for autonomous exploration.

IV. EXPLORATION WITH ACTIVE LOOP-CLOSING

The goal of an exploration task is to minimize the un-
certainty of the robot about the world. The uncertainty of a
posterior can be determined by the entropyH. In the following
we derive how to compute the entropy of a Rao-Blackwellized
particle filter for mapping. To improve the readability, we use
d to refer to all sensor and odometry measurements and x to
represent the whole trajectory of the vehicle. For the entropy
holds

H(p(m,x | d)) = H(p(m | x, d)p(x | d)) (2)

= −
∫

x

∫

m

p(m | x, d)p(x | d) ·

log(p(m | x, d)p(x | d)) dmdx (3)

= −
∫

x

∫

m

p(m | x, d) dm · p(x | d) log(p(x | d)) dx

−
∫

x

∫

m

p(m | x, d)p(x | d) log(p(m | x, d)) dmdx (4)

= −
∫

x

p(x | d) log(p(x | d)) dx

−
∫

x

p(x | d)

∫

m

p(m | x, d) log(p(m | x, d)) dmdx(5)

= H(p(x | d)) +

∫

x

p(x | d)H(p(m | x, d)) dx. (6)

Eq. (5) is obtained from Eq. (4) since
∫
m
p(m | x, d) dm = 1.

This derivation shows that in the context of Rao-Blackwellized
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Fig. 2. The red/gray circles and lines in these two image represent the nodes
and edges of G[s]. In the left image, I(s) contained two nodes. After closing
the loop the robot continues to acquire new terrain (right image).

particle filters the entropy can be divided into two components.
Whereas the first term represents the entropy of the posterior
about the trajectory of the robot, the second term corresponds
to the uncertainty about the map weighted by the likelihood
of the corresponding trajectory. Thus, to minimize the robot’s
overall uncertainty, one needs to reduce the map uncertainty
of the individual particles as well as the pose uncertainty.

Throughout this paper we mainly focus on the first com-
ponent of Eq. (6), although a reduction of the uncertainty in
the posterior about the trajectory of the robot typically assigns
small weights to inconsistent maps, which leads to a reduction
of the second term too. To minimize the uncertainty about the
trajectory of the robot our approach identifies opportunities to
actively close loops during terrain acquisition. This approach
actively re-enters known areas of the map and follows a
previously traversed path. As a result, unlikely path hypotheses
are eliminated from the particle set or get a low importance
weight so that the overall uncertainty is reduced.

To determine whether there exists a possibility to close a
loop we consider two different environmental representations.
Each particle s maintains an occupancy grid map m[s] and
a topological map G [s] during the exploration task. The ver-
tices in G[s] represent positions visited by the robot and the
trajectory of particle s corresponds to the edges in G [s]. New
nodes are created and added to the graph structure whenever
the robot moved for a certain distance or it cannot observe
any previously created node from its current location.

There exist techniques to combine topological maps with
other kind of spacial representations. This is typically done
to handle large-scale maps or to simplify the loop-closing
problem [1, 12, 13]. Those approaches can attach detailed local
maps to the nodes of the topological map. Building up such a
hierarchy is not intended by our work, since we only use the
topological map to detect loops in the environment.

Figure 2 shows such a graph for one particular particle
during different phases of an exploration task. In both images
the topological map G [s] is depicted on top of metric map
m[s]. To motivate the idea of our active loop-closing algorithm,
consider the left image of Figure 2. Here the robot is almost
closing a loop. This can be detected by the fact that the length
of the shortest path between the current pose of the robot
and previously visited locations in the topological map G [s]

is large, whereas it is small in the grid map m[s]. Thus, to
determine whether or not a loop can be closed we compute
for each sample s the set I(s). This set of positions of interest
contains all nodes that are close to the current pose x[s]

t of

particle s based on the grid map m[s] but are far away given
the topological map G [s]

I(s) = {x[s]
t′ ∈ nodes(G[s]) | distm[s](x

[s]
t′ , x

[s]
t ) < c1 ∧

distG[s](x
[s]
t′ , x

[s]
t ) > c2}. (7)

Here distm(x1, x2) is the length of the shortest path from
x1 to x2 given the grid map and distG(x1, x2) the shortest
path based on the topological map. The terms c1 and c2 are
constants that must satisfy the constraint c1 < c2.

If I(s) 6= ∅, there exist so-called shortcuts from x
[s]
t to the

positions in I(s). These shortcuts represent edges that would
generate a cycle in the graph structure of G [s] and therefore
constitute an opportunity to close a loop (compare Figure 2).
To determine the most likely movement that guides the robot
around the loop, one in principle has to integrate over all
particles and consider all potential outcomes of that particular
action. Since this would be too time consuming for online-
processing we consider only the particle s∗ with the highest
accumulated logarithmic importance weight

s∗ = argmax
s

t∑

t′=1

logω
[s]
t′ (8)

Here ω[s]
t is the weight of sample s at time step t. If I(s∗) 6= ∅,

we choose the node xte from I(s∗) which is closest to x[s∗]
t :

xte = argmin
x∈I(s∗)

distm[s∗](x
[s∗]
t , x) (9)

In the sequel, xte is denoted as the entry point at which
the robot has the possibility to close a loop. The term te
corresponds to the last time the robot was at the node xte .

Once the robot detects a loop, it approaches xte and then
follows the path taken after previously arriving at xte . During
this process the uncertainty in the pose of the vehicle typically
decreases, because the robot is able to localize itself in the map
built so far and unlikely particles vanish.

Furthermore, we have to define a criterion for deciding
when the robot actually has to stop following a loop. As
illustrated in the introduction (see Figure 1), this criterion
can have a major influence on the quality of the resulting
map. Therefore, one has to find an adequate criterion which
allows the filter to eliminate unlikely hypotheses but at the
same time makes the convergence to a wrong solution unlikely.
The termination criterion of the loop-closing process is the
main weakness of our previous approach [19] in which the
robot has to leave an inner loop whenever the uncertainty
drops below a certain threshold computed from the uncertainty
when it entered the loop. In the following we will introduce
an alternative criterion which takes into account how well
the current sensor information is suited to identify unlikely
hypotheses within the particle set.

To estimate how well the current set of N particle represents
the true posterior Liu [14] introduced the effective number of
particles Neff (also called effective sample size):

Neff =
1

∑N
s=1

(
ω[s]
)2 (10)



The idea behind this measure is to determine the variance
in the importance weights of the particles. Liu uses Neff to
resample in an intelligent way but it is also very useful in
the context of active loop-closing. We monitor the change of
Neff over time, which allows to analyze how the new acquired
information affects the filter. If Neff stays constant the new
information does not help to identify unlikely hypotheses rep-
resented by the individual particles. In that case, the variance
in the importance weights of the particles does not change
over time. If, in contrast, the value of Neff decreases over
time, the new information can be used to identify that some
particles are less likely than others. This is exactly the criterion
we need to decide whether or not the loop-closing should be
aborted. As long as new information helps to identify unlikely
particles we follow the loop. As soon as the observations do
not provide any new knowledge about the environment we
continue to explore new terrain. In the experimental section
we will show how Neff behaves when closing loops.

As long as no loop is detected, we use a frontier-based ex-
ploration strategy [2, 22] to choose target points for the robot.
In our current system we determine frontiers based on the map
of the most likely particle s∗. According to Yamauchi [22], a
frontier is any known cell that is an immediate neighbor of an
unknown, unexplored cell.

V. RECOVERING PARTICLE DIVERSITY AFTER LOOP
CLOSURE

In addition to the active loop-closing technique described
above, we need a way to recover hypotheses vanished from
a particle filter during the repeated traversal of an inner loop.
Even if the stopping criterion based on Neff makes particle
depletion unlikely, the vanishing of important hypotheses and
the resulting problem of filter divergence remains. Note that
the risk of particle depletion increases with the size of the
environment. Also, the smaller the number of particles, the
higher is that risk.

Consider, as an example, a robot that has accurately mapped
an inner loop. In such a case the particle filter will have
converged to a very peaked distribution and typically only
one hypothesis present at the entry point will have survived.
Thus, it is not guaranteed that this hypothesis is the one which
perfectly closes the outer loop. In principle, a robot therefore
has to maintain a sufficient variety of particles allowing it to
perform the next loop closure. Since the robot does not know
in advance how many loops it will find in the environment
this problem cannot be solved in general with a finite number
of particles only.

If one knew the starting point of such an inner loop in
advance, one solution would be to suspend the particle filter
and to start for each particle an individual RBPF initialized
with the current state of that particle. After the convergence
of all filters one can then attach their solutions to the corre-
sponding particles in the suspended filter. Apart from the fact
that a loop cannot be recognized in advance this approach is
not feasible for online tasks like exploration since the amount

of computational resources needed grows exponentially in the
number of loops.

The recovering technique described in this section is an
approximation of this approach. The key idea is to simulate
this process as soon as the robot detects a loop. Given the
current set of particles, the robot computes the posterior at the
entry point of the loop given the particles in its current belief.
In this approximative particle set the states and weights are
computed according to

x̃
[s]
te = predte(x

[s]
t ) (11)

ω̃
[s]
te = ω

[s]
t . (12)

Here predte(x
[s]
t ) is the state of the ancestor of x[s]

t at time
te. Whenever the robot stops the loop closing behavior it uses
this posterior to propagate the variety of the particles through
the loop. In probabilistic terms this corresponds to rewriting
the term p(x1:t | z1:t, u0:t−1) in Eq. (1) in the following way:

p(x1:t | z1:t, u0:t−1) =

p(xte+1:t | x1:te , zte+1:t, ute:t−1)p(x1:te | z1:te , u0:te−1)(13)

In our current implementation this posterior is ap-
proximated by importance sampling from p(xte+1:t |
x1:te , zte+1:t, ute:t−1). The trajectory drawn from this poste-
rior is attached to each particle in p(x1:te | z1:te , u0:te−1). This
process propagates the different hypotheses from the entry
point into the current belief before leaving the loop. If the
robot then has to close a second loop it has a higher chance
to find hypotheses closing this loop accurately.

Note that in general a mapping system has to maintain a
stack of saved states especially in environments with several
nested loops. Due to the fact that we control the robot
actively and never start a second loop-closing process before
completing the current one, we only have to maintain a single
saved state at each point in time.

As we demonstrate in the experiments this technique is
a powerful tool to recover vanished hypotheses without re-
starting the mapping algorithm from scratch. It only needs to
attach a local trajectory to each particle which can be done
within a few seconds (on a 2.8GHz Pentium IV).

VI. EXPERIMENTS

Our approach has been implemented and evaluated in real
world and in simulation. The experiments described here are
designed to illustrate the benefit of our active loop closing
technique with the ability to recover the diversity of the
particles after loop closing. We also demonstrate how Neff

evolves during exploration and why it is an useful criterion
to stop the loop-closing process. Furthermore we discuss
the advantages of our approach compared to our previous
algorithm described in [19].

A. Recovering the Particle Diversity

This experiment is designed to show the effect of our
technique to recover the particle variety when the robot leaves
a loop. The environment used to carry out this experiment is



save at xte

-
detect loop
?

recoverHY

Fig. 3. This figure shows the same experiment as depicted in Figure 1,
but using our recovering technique. In the left image the robots saves the set
of approximated particles at time step te and later on recovers the vanished
hypotheses (middle image). This allows the robot to correctly close the outer
loop (right image).

depicted in the right image of Figure 3. The robot started in the
outer loop, entered the inner loop, and stayed there for a long
period of time. As shown in Figure 1, without our recovering
technique the filter can converge to a wrong solution. The
reason is that at the time when the robot leaves the loop only
one hypothesis of the original particle set at the entry point has
survived. Accordingly, the robot lacks an appropriate particle
to properly close the outer loop. Using our algorithm, however,
the robot can recover the hypotheses at the entry point and can
propagate them through the loop (see left and middle image of
Figure 3). The most likely map of the posterior after closing
the outer loop is shown in the right image.

To provide a more quantitative analysis we mapped the
environment 30 times without the capability of restoring the
filter and 30 times with this option. The standard technique
was able to build a correct map in only 40% of all runs. In
all other cases the algorithm did not produce an accurate map.
In contrast to this, our algorithm yielded a success rate of
93%. We repeated this experiment in different environments
and got similar results. Figure 4 shows two (partial) maps
of the Killian Court at the MIT. The left map has been built
without the recovering technique using 40 particles and shows
inconsistencies due to vanished hypotheses. The right map has
been constructed using our recovering technique in which the
correct hypothesis has been restored. The average success rate
of our approach was 55% whereas the standard approach found
the correct data association in only 5% of all 40 runs.

This shows that our recovering technique is a powerful
extension to autonomous exploration with mapping systems
based on RBPFs especially in the context of (multiple) nested
loops. Note that in general the success rate of the standard
approach increases with number of particles used. Since each
particle carries its own map, it is of utmost importance to
keep this value as small as possible. Therefore our approach
also can be regarded as a contribution to limit the number of
particles during Rao-Blackwellized mapping.

Additionally, we analyzed in our experiments the approxi-
mation error obtained by retrospectively recovering the par-
ticles at the entry point of a loop. Using this system we
observed that in our experiments typically around 75% of
the particles in the filter at time step te had a successor in
the current set and were therefore saved. In principle, this
value must drop for loops of increasing length. However, in
our experiments we found similar values in several different
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Fig. 4. This figure shows two maps of the Killian Court at the MIT. The size
of the environment is 150m × 80m. The left map was constructed with the
standard RBPF approach. If, in contrast, the robot is able to recover hypotheses
the map becomes more accurate (right image).

environments. The Kullback-Leibler distance (KL-distance)
between the recovered particle set and the true one at time step
te was between 1.0 and 1.5 compared to a value around 13 in
the situation in which only a single hypothesis survived. This
again illustrates the advantage of our new technique over the
previous approach [19]. Using the technique described here the
robot can move arbitrarily long through a nested loop without
losing the capability to close an outer loop.

B. Using Neff to Stop the Loop-Closing Procedure

In this experiment we analyze the constraint that terminates
the active loop-closing behavior. The process is stopped when-
ever Neff stays constant for a certain period of time.

One typical evolution of Neff is depicted in the left image
of Figure 5. The robot started at position A and in the first
part of the experiment explored unknown terrain (between the
positions A and B). As can be seen, Neff decreases over
time. After the loop has been closed correctly and unlikely
hypotheses had partly been removed by the resampling action
(position B) the robot processed the inner loop and Neff stayed
more or less constant. This indicates that acquiring further
data in this area has only a very small effect on the relative
likelihood of the particles and the system could not determine
which hypotheses represented unlikely configurations. In such
a situation, it therefore makes more sense to focus on new ter-
rain acquisition and to not continue the loop-closing process.

If the robot takes into account the evolution of Neff to stop
the loop-closing procedure, it moves through this loop only as
long as it can acquire useful data to identify unlikely particles.
It collects enough data to make the correct data association.
Unless the number of particles is not too small or the size of
the loop is not too big, the filter will typically not converge
to a wrong hypothesis. One example for an exploration task
done with 30 particles in an environment with several loops is
depicted in Figure 6. The loop closing procedure was executed
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Fig. 5. The graph plots the evolution of the Neff function over time during
an experiment in the environment shown in the right image. The robot started
at position A. The position B corresponds to the closure of the inner loop,
and C corresponds to closure of the outer loop.

Fig. 6. The map acquired by autonomous exploration in an environment
with 3 loops and a size of 40m × 40m. The most likely grid map is depicted
in the background whereas the topological map is shown in the foreground.

four times during this exploration task. As can be seen, all
loops have been closed accurately.

Furthermore, we analyzed the length of the trajectory trav-
eled by the robot. Due to the active loop-closing our technique
generates longer trajectories compared to a purely frontier-
based exploration strategy. We performed several experiments
in different environments and measured the average overhead.
Typically the overhead was less than 10%, but it obviously
depends on number of loops in the environment and their
length.

VII. CONCLUSION

In this paper we presented a novel approach to maintaining
particle diversity during actively closing loops in a mapping
system based on a Rao-Blackwellized particle filter. When
closing a loop our approach determines an approximation of
the particle set at the time the robot entered the loop. It uses
this posterior to propagate the particle diversity through the
loop. Compared to previous approaches this allows the robot to
traverse a nested loop for an arbitrary amount of time without
depleting important particles.

The approach has been implemented and tested on real robot
data as well as in simulation. As experimental results demon-
strate, we obtain a robust exploration algorithm that produces
more accurate maps compared to standard combinations of
SLAM algorithms with exploration techniques, especially, in
the context of nested loops.
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