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Web Programming

e Early Web pages:
static, contents of files transported over the network
e Today's Web pages:
— highly dynamic
— composed from document templates, database accesses,

computed elements

— parameterized wrt. language, image quality, user profiles, ...

= must be programmed

— either on client-side (applets, JavaScript, VB, ...)

— or on server-side (SSI, CGI, NSAPI, ISAPI, Servlets, JSP, ...



The WASH/CGI Approach

Server-side Web scripting
Embedded DSL hosted by Haskell
Based on CGI (portability)

Raw CGl functionality accessible

Advanced high-level functionality



1 Preliminaries

1.1 Definitions

e program: defines a number of values (possibly functions)

® VvV = e

define the value of variable v as the value of expression e

o f vy ...V, = €

define the function £ which takes n arguments; expression e is the
body of the function

® let definitions in e

establishes definitions local to expression e

® ¢ where definttions

establishes definitions local to expression e



1.2 Types

® Vv :: t

a type signature; asserts that the value of variable v has type t

e Built-in Types

— Int Integers

— Char charaters

— [t] lists of value of type t

— String lists of characters

— t1 >ty > ... > t, >t functions that expect n
arguments of type tq, ..., t,, and return a result of type t

— 10 t an 1/O action that returns a result of type t (later)



2 Generating Web Pages

e \Webpages-as-text is not appropriate
— phase errors (headers, main message)
— structural errors (well-formedness, validity)

— requires too much low-level knowledge

e WASH/CGI's approach
— Web pages represented by data structures
— constructed functionally

— automatic conversion to text on output



An example

import CGI -- indicate it’s using CGI
main = —-— main program (fixed)
run $ —-- starts a CGI script
ask $ —-- delivers a Web page
standardPage "Hello" § —-— constructs a Web page

text "This is my first CGI program!"

—-— contents of page



Explanation

$ is function application;

write “f $ a” for “f (a) " or “f a

“f$g$a means "f (g a)’
main is an /O action of type “I0 ()"

run is a function that maps a CGIl action to an I/O action

run :: CGI () -> I0 O

ask maps a document to a CGl action

ask :: WithHTML CGI () -> CGI ()

standardPage is a parameterized document of type

String -> WithHTML CGI a -> WithHTML CGI a



More on Documents

WithHTML CGI a type of sequences of document nodes

(elements, attributes, or text nodes)
corresponds to contents of a HTML element
also computes a value of type a (/ater)

text :: String -> WithHTML CGI ()

creates a singleton sequence with one text node
for each HTML tag t, there is a constructor function

t :: WithHTML CGI a -> WithHTML CGI a

— it takes a sequence of child elements and attributes
— creates an element with tag ¢

— returns it in a singleton sequence

Example: p (text "This is my first CGI program!")



Document Node Sequences

e the empty sequence

empty

e concatenation of sequences

seql ## seq2 or

seql >> seq2 or

do { seql; seq2; ...; seqn } or

do seql
seq2

seqn
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Example

ask $
standardPage "Hello" $
do p (text "This is my second CGI program!")
p (do text "My hobbies are"
ul (do 1li (text "swimming")
1i (text "music")
1i (text "skiing")))
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HTML With Style: Composable Style Attributes

e style operators are :=:, :7:, and using

e style attributes (cf. CSS2)
fgRed = "color" :=: "red"

bgGreen = "background" :=: "green"

e combining style attributes

styleImportant = fgRed :7: bgGreen

e using the style

using (style) (elem) (sequence)

using styleImportant p (text "This is important!")
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A Complete Example

import CGI

fgRed = "color" :=: "red"
bgGreen = "background" :=: "green"
styleImportant = fgRed :7: bgGreen

important = using styleImportant

main =
run $
ask $
standardPage "Hello" $

important p (text "This is important!")
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3 Simple Interaction

Let's personalize our program:
e ask for the name
e send a personalized greeting
For programming this interaction, we need to specify
e a form
e an input field

e an action taken on input
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Creating a Form

e ‘‘raw’ constructor for form element not available

e the “cooked’ constructor
makeForm :: WithHTML CGI a -> WithHTML CGI ()

creates form with standard attributes preset

e for convenience, we wrap this into a parameterized document:

standardQuery :: String -> WithHTML CGI a -> WithHTML CGI a

standardQuery ttl elems =

ask (standardPage ttl (makeForm elems))
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Creating an Input Field

e ‘raw’ constructor for input element not available

e the “cooked” constructor
textInputField :: HTMLField (InputField String INVALID)
using the type definition
type HTMLField a = WithHTML CGI () -> WithHTML CGI a

e textInputField is a function that maps
— a sequence of attributes for the input field to

— a singleton sequence containing the input field
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Input Handles

e /n addition to constructing the HTML element,
the constructor returns a handle to the input field

textInputField :: HTMLField (InputField String INVALID)

e the type of the handle is InputField String INVALID
— String the field contains a string

— INVALID the field does not contain valid information, yet
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Attaching an Action to an Input Field

Simple method for activating one input field

activate actionFun inpField elems

® actionFun :: a -> CGI ()
maps contents of input field to a CGI action

activated when data is entered into the field

e inpField :: HTMLField (InputField a INVALID)

@ elems :: WithHTML CGI ()

sequence of attributes for the input field

e in our example: a is String
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Complete Example Code
import CGI

standardQuery ttl cont =
ask (standardPage ttl (makeForm cont))

main = run $ standardQuery "What’s your name?" $
p (do text "Hi there! What’s your name?"

activate greeting textInputField empty)

greeting :: String -> CGI ()
greeting name =
standardQuery "Hello" $
do text "Hello "
text name

text ". This is my first interactive CGI program!"
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4 Typed Input and Tabular Output

Let's extend the previous example to print a multiplication table.
After the greeting

e ask for a multiplier

e print its multiplication table
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Replace greeting by mtable

mtable name =
standardQuery "Multiplication Table" §
do p (text ("Hello " ++ name ++ "!"))
p (text "Let’s see a multiplication table!")
p (text "Give me a multiplier " >>

activate ptable inputField empty)
e ++ is string and list concatenation
e given that ptable :: Int -> CGI ()
e the input field has type InputField Int INVALID

= an input field of this type refuses all inputs that are not
integers!
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Tabular Output

ptable :: Int -> CGI ()
ptable mpy =
standardQuery "Multiplication Table" $
table (mapM_ pLine [1..12])
where
align = attr "align" "right"
pLine i = tr (do td (text (show i) ## align)
td (text "x*")
td (text (show mpy))
td (text "=")
td (text (show (i * mpy)) ## align))

e [1..12] is list of integers 1, 2,3, ..., 12
e mapM_ pLine [1..12] applies pLine to each element of [1..12]

e attr "align" "right" creates the attribute align="right"
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5 Interaction with Multiple Inputs

Let's modify the previous example to a teaching program for exercising
multiplication:

e Ask for a multiplier
e Ask for a number of exercises
e Present exercise questions one at a time

e Display summary evaluation at the end
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Replace greeting by mdrill

mdrill name =
standardQuery "Multiplication" $
do p (text ("Hello " ++ name ++ "!"))
p (text "Let’s exercise some multiplication!")
mpyF <- p (text "Give me a multiplier " >>
inputField (attr "value" "2"))
rptF <- p (text "Number of exercises " >>
inputField (attr "value" "10"))
submit (F2 mpyF rptF) (firstExercise name) empty
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Extended do Notation

Recall that construction of a sequence also computes a value.
The notation

do

var <- seq

extracts the value (e.g., an input handle) computed while constructing
seq Into variable var.

Example:

do
mpyF <- p (text "Give me a multiplier " >>

inputField (attr "value" "2"))
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Value Propagation

e inputField occurs nested within p
= must specify how value of inputField becomes value of p (...)

e Propagation rules

— elem (seq) returns the value of seq

(elem an element constructor)

— seql >> seq2 returns the value of seq2
— seql ## seq2 returns the value of seql
— do {seql; ...; seqn} returns value of seqn

e Example:
p (text "Give me a multiplier " >>
inputField (attr "value" "2"))

returns the input handle created by the inputField.
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Specifying Actions

e Creation of a separate submit button
submit handle action attrs
— handle invalid handle for input fields
— action function that maps valid handles to a CGl action

— attrs further attributes for the input field
e submit validates the input handles and passes them to action
— handle :: h INVALID
= action :: h VALID -> CGI ()
= attrs :: WithHTML GCI ()

e where h is any input handle
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Combining Input Handles

Differrent handle types must be used:

e h = FO no input handles

submit FO action

e h = InputField a a single input handle for values of type a

do inF <- inputField empty

submit inF action

e h = F2 hl h2 a pair of two input handles, h1 and h2

do inF1l <- inputField empty
inF2 <- inputField empty

submit (F2 inF1 inF2) action

e and soon ...
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Accessing Input Handles

e value :: InputHandle a VALID -> a

if the handle is valid, then contents can be directly accessed

e In the example:

firstExercise name (F2 mpyF rptF) =
runExercises 1 [] []
where
mpy, rpt :: Int
mpy = value mpyF
rpt = value rptF

e mpy, rpt :: Int

fixes type of input to integer
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Interaction Logic (in Haskell)

runkExercises nr successes failures =
if nr > rpt then
finalReport

else
let msg = "Question " ++ show nr ++ " of " ++ show rpt

do factor <- io (randomRIO (0,12))

standardQuery msg $
do text (show factor ++ " * " ++ show mpy ++ " = ")

activate (checkAnswer factor) inputField empty

e io lifts an I/O action into a CGl action

e randomRIO (0,12) is I/O action that returns a random number
between 0 and 12 (from Haskell standard library Random)

e still nested inside where (to access rpt and mpy)
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Further Interaction Logic

where
checkAnswer factor answer =
let result = factor * mpy
correct = answer == result
message = if correct then "correct! " else "wrong! "
continue FO = if correct
then runExercises (nr+1) (factor:successes) failures
else runExercises (nr+1) successes (factor:failures)
in standardQuery ("Answer " ++ show nr ++ " of " ++ show rpt) $
do p (text (show factor ++ " * " ++ show mpy ++ " = " ++ show result))
text ("Your answer " ++ show answer ++ " was " ++ message)
submit FO continue (attr "value" "CONTINUE")

e continue takes no input handles = FO
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6 Specifying Input Fields

So far, we have seen

e textInputField

unconstrained text input

e inputField

input in Haskell read syntax
But often, more restrictions apply

e select from a fixed set of alternatives

e further consistency checks (non-empty fields, email addresses, .

32
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6.1 Selector Boxes

selectSingle :: Eq a => (a -> String) -> Maybe a -> [a]
-> HTMLField (InputField a INVALID)

selectSingle showFunction maybeDefault options
e a is type of selected values
e Eq a states that values must be comparable

® showFunction :: a -> String

maps a value to its menu entry (a string)
e maybeDefault is either Nothing or Just defaultValue

e options is the list of values from which to choose
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Application in mdrill

do
mpyF <- p (text "Give me a multiplier " >>

selectSingle show Nothing [2..12] empty)

e show is Haskell-provided printing function
e Nothing: no default specified = form insists on an entry
e [2..12] list of options

e empty — no attributes for the selection box
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6.2 Radio Buttons

® radioGroup attrs
— creates a radio group (an invisible widget)
— attrs are common attributes for all members
— the function value extracts the value from a radio group

— hence, all members have the same type

® radioButton radiogroup val

attaches a button returning val to radiogroup

® radioError radiogroup

specifies the location of the error indicator 7 for radiogroup
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do
rptF <-
p (text
text
text
text

Application in mdrill

radioGroup empty

"Number of exercises " >>

"5 " ## radioButton rptF 5 empty >>
" 10 " ## radioButton rptF 10 empty >>
" 20 " ## radioButton rptF 20 empty >>

radioError rptF)
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6.3 Constrained Textual Input Fields

For application-specific input formats like
e non-empty string
e email address
e amount of money

we can define customized input fields by
e creating application-specific datatypes
e defining a read syntax
e giving an explanatory text

(requires skill in Haskell programming)
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Example: EmailAddress

e the application-specific datatype

newtype EmailAddress =

EmailAddress unEmailAddress :: String

unEmailAddress extracts the string value from EmailAddress

e the explanatory text

instance Reason EmailAddress where

reason _ =
"email address \

\{must contain @ and no special characters except . - _}"
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Example: EmailAddress — continued

e defining a read syntax (not quite RFC2822)

instance Read EmailAddress where
readsPrec i str =

let isAddressChar c = isAlpha c || isDigit c¢ || c ‘elem®
(name, atDomain) = span isAddressChar (dropWhile isSpace str)
in case atDomain of

’@’ : domainPart ->
let (domain, rest) = span isAddressChar domainPart in
if null name || null domain
then []
else [(EmailAddress (name ++ ’Q@’ : domain)

,dropWhile isSpace rest)]
- >0
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Example: EmailAddress — in use

main = run $
standardQuery "Enter Your Email Address" $
p (do text "Hi there! What’s your email address?"

activate getEmail inputField empty)

getEmail email =
standardQuery "Process Email" $

do p (text ("Hello " ++ unEmailAddress email ++ "!1"))
e created using inputField

e extract and fix type using

unEmailAddress :: EmailAddress -> String
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7 Server-Side State

For the final report, we would like to have a “hall of fame” that

displays the best results for each student.

e Keep a mapping from names and multipliers to correct results on

the server

e Mapping is generally accessible from all clients

= concurrency control required

(invisible for programmer)
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Considerations for Server-Side State

data is stored in textual format
conversion done using builtin Read and Show classes
type safety across program boundaries

class Types

(using problem-specific types requires Haskell expertise)
provide abstract datatype of persistent values

only indirectly accessible through handles

each handle has notion of current value

accessible throughout lifetime of handle
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Initializing Server-Side State

® 1import Persistent2

import API for persistent values

®@ init externalName initialValue

a CGI action

allocates/accesses a persistent value named externalName

initialized with initialValue

only if persistent value is freshly created
returns Nothing if the value existed but had a different type

returns Just handle where the persistent value of type a is
accessible through handle of type T a
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Accessing Server-Side State

Suppose handle :: T ais a handle to a persistent value of type a

e get handle

retrieves the persistent value

e set handle newValue
updates the persistent value
If successful, return a Just newHandle for the current value
returns Nothing if the handle is not current (if it was modified by a
concurrent process)

e add handle additionalValue
handle refers to a value of list type

adds additionalValue to the persistent list of values

e current handle

returns a newHandle that refers to the current persistent value
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Per sistent

Process A Value Process B
h<-initpvO0 PV p
-h== 0->vO0
hb <-init pvl
X <-geth --hb ==
-X==v0 -- v1 discarded
0->v0 mhb <- set hb v2
1->v2 --mhb==Just 1
mha<- set hv2
-- mha == Nothing
-- h not current
curh <- current h
-- curh ==
x1<-geth
--x1==v0
x2 <- get curh
--X2==V2
set curh v3 0->v0
-- successful 1->v2
2->v3
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Example: Final Report

import qualified Persistent2 as P
—-— abbreviate Persistent2 to P
finalReport =
do Just initialHandle <- P.init ("multi-" ++ name) []
currentHandle <- P.add initialHandle (mpy, lenSucc, rpt)
hiScores <- P.get currentHandle
standardQuery "Final Report" $
do p (text "Here are your recent scores.")
ul (mapM_ pItem hiScores)
where lenSucc = length successes
pltem (m, 1, r) = 1i (text ("Multiplier " ++ show m ++

" . " ++ gshow 1 ++ " correct out of " ++ show r))
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APl Summary: Persistent2

init :: (Read a, Show a, Types a) =>

String -> a —-> CGI (Maybe (T a))
get :: (Read a) =>

T a -> CGI a
set :: (Read a, Show a) =>

T a ->a -> CGI (Maybe (T a))
add :: (Read a, Show a) =>

T [a] -> a -=> CGI (T [a])
current :: (Read a) =>

T a -> CGI (T a)
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8 Client-Side State

A user should only be required to enter his name once
e store user name on client side

= store on client
e implemented using “cookies”

e ... but type-safe!
(errh, type-indexed)

e interface similar to Persistent?

e but no history maintained
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Example

import qualified Cookie as C

main = run $
do nameC <- C.init "name" Nothing
mname <- C.get nameC
case mname of
Just name ->
mdrill name
Nothing ->
standardQuery "What’s your name?" $
p (do text "Hi there! What’s your name?"
activate (mdrillCookie nameC) textInputField empty)

mdrillCookie nameC name =
do C.set nameC (Just name)
mdrill name
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Tour of Cookie API

e (Read a, Show a, Types a) =>

required for all storable types (cf. Persistent?2)

® 1init cookieName initialValue
a CGl action that
— creates a handle to client-side variable cookieName
— initializes to initialValue if the variable must be created
— always successful (names are type-indexed)

— returned handle is current
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Tour of Cookie API, Part 2

® get handle
a CGI action that
— returns value associated to handle

— fails if handle is not current

usually due to improper behavior of user or programming error

® set handle newValue

— if handle is current, then overwrite with newValue and return
Just the new current handle

— if handle is not current, then return Nothing
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init

get

set

delete

APl Summary: Cookie

(Read a, Show a, Types a) =>
String -> a -> CGI (T a)
(Read a, Show a, Types a) =>
T a -> CGI a

(Read a, Show a, Types a) =>
T a -> a -> CGI (Maybe (T a))
(Types a) =>

T a->CGI (O
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9 Advanced Topics

9.1 Uploading Files

fileInputField :: HTMLField (InputField FileReference INVALID)

e value of type FileReference is a record

— fileReferenceName, a local file path (on server)

— fileReferenceContentType, content type of the file

— fileReferenceExternalName, provided by submitter

e FileReference is only temporary

e script responsible for renaming or copying to safe location
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Example Uploader

main = run $
standardQuery "Upload File" $
do text "Enter file to upload "
fileH <- filelnputField empty
submit fileH display (fieldVALUE "UPLOAD")

display :: InputField FileReference VALID -> CGI ()
display fileH =
let fileRef = value fileH in
standardQuery "Upload Successful" $
do text "Check file contents "
submit FO (const (tell fileRef)) (fieldVALUE "GO")

e \Warning! Security problems may lurk!
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9.2 Non-textual Responses

e tell :: CGIOutput data => data -> CGI ()
e transform data to CGI action that returns data to browser

e examples for data
— FileReference
— Element (HTML elements)
— String (generates text/plain document)
— Status messages
— Location (redirection)

— FreeForm contents:

FreeForm fileName contentType rawContents
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Example: File Downloader

main = run $ standardQuery "SendFile" $ table $ do
pcNameF  <- tr (td (text "File name") >>
td (textInputField (fieldSIZE 20)))
passwordF <- tr (td (text "Password") >>
td (passwordInputField (fieldSIZE 20)))
tr (td (submit (F2 pcNameF passwordF) sendFile (fieldVALUE "SEND")) >> td empty)

sendFile (F2 fileNameF passwordF) =
let fileName = value (unNonEmpty fileNameF)

password = value (unNonEmpty passwordF)
in if validPassword fileName password then tell
FileReference { fileReferenceName = storeDirectory ++ fileName
, fileReferenceContentType = guessContentType fileName

}

else htell $ standardPage "Login incorrect" $ backLink
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9.3 Inlined Downloading

e standard link (no download button)

e still return arbitrary files
— accessible to script

— not necessarily accessible to Web server
= install a translator

e translator :: [String] -> CGI ()

maps path name to CGl action
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Using a Translator

e replace run with runWithHook translator
e create a reference to a named item with makRef name attrs

e example:

translator (name:_) =
let fileName = storeDirectory ++ name in
do ex <- unsafe_io (doesFileExist fileName)
if ex
then tell FileReference
{ fileReferenceName = fileName
, fileReferenceContentType = guessContentType name

+

else fallbackTranslator [name]
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9.4 Sending Email

e Deja Vue: message-as-text not appropriate
= create record data types for email contents and messages

e Email contents: data type DOC

mediatype :: String, -— type

subtype :: String, —-— subtype

parameters :: [KV], —-- parameters
filename ;1 String, -- suggested filename

-- depending on mediatype only one of the following is relevant:

messageData :: String, -- data
textLines :: [String], —-- lines
parts : : [DOC] -- data
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Actual Interface

textDOC :: String -> [String] -> DOC
textDOC subty docLines

create a text document with content type text/subty
binaryDOC :: String -> String -> String -> DOC
binaryDOC mediaty subty bindata

arbitrary document with content type mediaty/subty

multipartDOC :: [DOC] -> DOC

multipartDOC subdocs

collect a list subdocs of documents into one

further possibilities (alternative, external, ...)
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Datatype for Messages

e Mail is a record

to ::  [String],
subject ::  String,
cc ::  [String],
bcc 1t [String],
headers X [Header],
contents :: DOC

e convenience function

simpleMail recipients subj doc
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Example of Sending Mail

notifyAccept submission reports = do
instr <- io (readFile instructionsFile)
let opening = textDOC "plain"

["Dear " ++ itemAuthor submission ++ ","

nn
b

,"I am pleased to inform you that your paper"

, " "++ jtemTitle submission

,"has been accepted for presentation ..."]
instructions =

(textDOC "plain" (lines instr))

{ filename= "AuthorInstructions" }

notify [opening, instructions] submission reports
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Example of Sending Mail (cont’'d)

notify frontmatter submission reports = do
let doReport report nr =
(textDOC "plain" (lines (reportForAuthor report)))
{ filename= "Review#" ++ show nr }
doc = multipartDOC (frontmatter ++ zipWith doReport reports [1..])
message = (simpleMail [itemEmail submission] "Notification" doc)

{cc= [chairperson]
,headers= [Header ("From", chairperson)]
}

exitcode <- io (sendmail message)
htell (standardPage ("Message sent. Exitcode = " ++ show exitcode) empty)
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10 Conclusion

e simple, declarative approach to Web-based user interfaces
e types and type safety essential

o GUI-style programming interface

e natural interface to HTML

e ideas not tied to CGI

e applications: submission software, generic time table, . ..

e available from

http://www.informatik.uni-freiburg.de/ "thiemann/WASH
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