Functional Web Programming

Peter Thiemann
Universitat Freiburg

ETAPS 2002; Tutorial T5; Sunday, April 14, 2002, morning

Web Programming

e Early Web pages:
static, contents of files transported over the network
e Today's Web pages:
— highly dynamic
— composed from document templates, database accesses,

computed elements

— parameterized wrt. language, image quality, user profiles, ...

= must be programmed

— either on client-side (applets, JavaScript, VB, ...)

— or on server-side (SSI, CGI, NSAPI, ISAPI, Servlets, JSP, ...

The WASH/CGI Approach

Server-side Web scripting
Embedded DSL hosted by Haskell
Based on CGI (portability)

Raw CGl functionality accessible

Advanced high-level functionality

1 Preliminaries

1.1 Definitions

e program: defines a number of values (possibly functions)

® VvV = e

define the value of variable v as the value of expression e

o f vy ...V, = €

define the function £ which takes n arguments; expression e is the
body of the function

® let definitions in e

establishes definitions local to expression e

® ¢ where definttions

establishes definitions local to expression e

1.2 Types

® Vv :: t

a type signature; asserts that the value of variable v has type t

e Built-in Types

— Int Integers

— Char charaters

— [t] lists of value of type t

— String lists of characters

— t1 >ty > ... > t, >t functions that expect n
arguments of type tq, ..., t,, and return a result of type t

— 10 t an 1/O action that returns a result of type t (later)

2 Generating Web Pages

e \Webpages-as-text is not appropriate
— phase errors (headers, main message)
— structural errors (well-formedness, validity)

— requires too much low-level knowledge

e WASH/CGI's approach
— Web pages represented by data structures
— constructed functionally

— automatic conversion to text on output

An example

import CGI -- indicate it’s using CGI
main = —-— main program (fixed)
run $ —-- starts a CGI script
ask $ —-- delivers a Web page
standardPage "Hello" § —-— constructs a Web page

text "This is my first CGI program!"

—-— contents of page

Explanation

$ is function application;

write “f $ a” for “f (a) " or “f a

“fga means "f (g a)’
main is an /O action of type “I0 ()"

run is a function that maps a CGIl action to an I/O action

run :: CGI () -> I0 O

ask maps a document to a CGl action

ask :: WithHTML CGI () -> CGI ()

standardPage is a parameterized document of type

String -> WithHTML CGI a -> WithHTML CGI a

More on Documents

WithHTML CGI a type of sequences of document nodes

(elements, attributes, or text nodes)
corresponds to contents of a HTML element
also computes a value of type a (/ater)

text :: String -> WithHTML CGI ()

creates a singleton sequence with one text node
for each HTML tag t, there is a constructor function

t :: WithHTML CGI a -> WithHTML CGI a

— it takes a sequence of child elements and attributes
— creates an element with tag ¢

— returns it in a singleton sequence

Example: p (text "This is my first CGI program!")

Document Node Sequences

e the empty sequence

empty

e concatenation of sequences

seql ## seq2 or

seql >> seq2 or

do { seql; seq2; ...; seqn } or

do seql
seq2

seqn

10

Example

ask $
standardPage "Hello" $
do p (text "This is my second CGI program!")
p (do text "My hobbies are"
ul (do 1li (text "swimming")
1i (text "music")
1i (text "skiing")))

11

HTML With Style: Composable Style Attributes

e style operators are :=:, :7:, and using

e style attributes (cf. CSS2)
fgRed = "color" :=: "red"

bgGreen = "background" :=: "green"

e combining style attributes

styleImportant = fgRed :7: bgGreen

e using the style

using (style) (elem) (sequence)

using styleImportant p (text "This is important!")

12

A Complete Example

import CGI

fgRed = "color" :=: "red"
bgGreen = "background" :=: "green"
styleImportant = fgRed :7: bgGreen

important = using styleImportant

main =
run $
ask $
standardPage "Hello" $

important p (text "This is important!")

13

3 Simple Interaction

Let's personalize our program:
e ask for the name
e send a personalized greeting
For programming this interaction, we need to specify
e a form
e an input field

e an action taken on input

14

Creating a Form

e ‘‘raw’ constructor for form element not available

e the “cooked’ constructor
makeForm :: WithHTML CGI a -> WithHTML CGI ()

creates form with standard attributes preset

e for convenience, we wrap this into a parameterized document:

standardQuery :: String -> WithHTML CGI a -> WithHTML CGI a

standardQuery ttl elems =

ask (standardPage ttl (makeForm elems))

15

Creating an Input Field

e ‘raw’ constructor for input element not available

e the “cooked” constructor
textInputField :: HTMLField (InputField String INVALID)
using the type definition
type HTMLField a = WithHTML CGI () -> WithHTML CGI a

e textInputField is a function that maps
— a sequence of attributes for the input field to

— a singleton sequence containing the input field

16

Input Handles

e /n addition to constructing the HTML element,
the constructor returns a handle to the input field

textInputField :: HTMLField (InputField String INVALID)

e the type of the handle is InputField String INVALID
— String the field contains a string

— INVALID the field does not contain valid information, yet

17

Attaching an Action to an Input Field

Simple method for activating one input field

activate actionFun inpField elems

® actionFun :: a -> CGI ()
maps contents of input field to a CGI action

activated when data is entered into the field

e inpField :: HTMLField (InputField a INVALID)

@ elems :: WithHTML CGI ()

sequence of attributes for the input field

e in our example: a is String

18

Complete Example Code
import CGI

standardQuery ttl cont =
ask (standardPage ttl (makeForm cont))

main = run $ standardQuery "What’s your name?" $
p (do text "Hi there! What’s your name?"

activate greeting textInputField empty)

greeting :: String -> CGI ()
greeting name =
standardQuery "Hello" $
do text "Hello "
text name

text ". This is my first interactive CGI program!"

19

4 Typed Input and Tabular Output

Let's extend the previous example to print a multiplication table.
After the greeting

e ask for a multiplier

e print its multiplication table

20

Replace greeting by mtable

mtable name =
standardQuery "Multiplication Table" §
do p (text ("Hello " ++ name ++ "!"))
p (text "Let’s see a multiplication table!")
p (text "Give me a multiplier " >>

activate ptable inputField empty)
e ++ is string and list concatenation
e given that ptable :: Int -> CGI ()
e the input field has type InputField Int INVALID

= an input field of this type refuses all inputs that are not
integers!

21

Tabular Output

ptable :: Int -> CGI ()
ptable mpy =
standardQuery "Multiplication Table" $
table (mapM_ pLine [1..12])
where
align = attr "align" "right"
pLine i = tr (do td (text (show i) ## align)
td (text "x*")
td (text (show mpy))
td (text "=")
td (text (show (i * mpy)) ## align))

e [1..12] is list of integers 1, 2,3, ..., 12
e mapM_ pLine [1..12] applies pLine to each element of [1..12]

e attr "align" "right" creates the attribute align="right"

22

5 Interaction with Multiple Inputs

Let's modify the previous example to a teaching program for exercising
multiplication:

e Ask for a multiplier
e Ask for a number of exercises
e Present exercise questions one at a time

e Display summary evaluation at the end

23

Replace greeting by mdrill

mdrill name =
standardQuery "Multiplication" $
do p (text ("Hello " ++ name ++ "!"))
p (text "Let’s exercise some multiplication!")
mpyF <- p (text "Give me a multiplier " >>
inputField (attr "value" "2"))
rptF <- p (text "Number of exercises " >>
inputField (attr "value" "10"))
submit (F2 mpyF rptF) (firstExercise name) empty

24

Extended do Notation

Recall that construction of a sequence also computes a value.
The notation

do

var <- seq

extracts the value (e.g., an input handle) computed while constructing
seq Into variable var.

Example:

do
mpyF <- p (text "Give me a multiplier " >>

inputField (attr "value" "2"))

25

Value Propagation

e inputField occurs nested within p
= must specify how value of inputField becomes value of p (...)

e Propagation rules

— elem (seq) returns the value of seq

(elem an element constructor)

— seql >> seq2 returns the value of seq2
— seql ## seq2 returns the value of seql
— do {seql; ...; seqn} returns value of seqn

e Example:
p (text "Give me a multiplier " >>
inputField (attr "value" "2"))

returns the input handle created by the inputField.

26

Specifying Actions

e Creation of a separate submit button
submit handle action attrs
— handle invalid handle for input fields
— action function that maps valid handles to a CGl action

— attrs further attributes for the input field
e submit validates the input handles and passes them to action
— handle :: h INVALID
= action :: h VALID -> CGI ()
= attrs :: WithHTML GCI ()

e where h is any input handle

27

Combining Input Handles

Differrent handle types must be used:

e h = FO no input handles

submit FO action

e h = InputField a a single input handle for values of type a

do inF <- inputField empty

submit inF action

e h = F2 hl h2 a pair of two input handles, h1 and h2

do inF1l <- inputField empty
inF2 <- inputField empty

submit (F2 inF1 inF2) action

e and soon ...

28

Accessing Input Handles

e value :: InputHandle a VALID -> a

if the handle is valid, then contents can be directly accessed

e In the example:

firstExercise name (F2 mpyF rptF) =
runExercises 1 [] []
where
mpy, rpt :: Int
mpy = value mpyF
rpt = value rptF

e mpy, rpt :: Int

fixes type of input to integer

29

Interaction Logic (in Haskell)

runkExercises nr successes failures =
if nr > rpt then
finalReport

else
let msg = "Question " ++ show nr ++ " of " ++ show rpt

do factor <- io (randomRIO (0,12))

standardQuery msg $
do text (show factor ++ " * " ++ show mpy ++ " = ")

activate (checkAnswer factor) inputField empty

e io lifts an I/O action into a CGl action

e randomRIO (0,12) is I/O action that returns a random number
between 0 and 12 (from Haskell standard library Random)

e still nested inside where (to access rpt and mpy)

30

Further Interaction Logic

where
checkAnswer factor answer =
let result = factor * mpy
correct = answer == result
message = if correct then "correct! " else "wrong! "
continue FO = if correct
then runExercises (nr+1) (factor:successes) failures
else runExercises (nr+1) successes (factor:failures)
in standardQuery ("Answer " ++ show nr ++ " of " ++ show rpt) $
do p (text (show factor ++ " * " ++ show mpy ++ " = " ++ show result))
text ("Your answer " ++ show answer ++ " was " ++ message)
submit FO continue (attr "value" "CONTINUE")

e continue takes no input handles = FO

31

6 Specifying Input Fields

So far, we have seen

e textInputField

unconstrained text input

e inputField

input in Haskell read syntax
But often, more restrictions apply

e select from a fixed set of alternatives

e further consistency checks (non-empty fields, email addresses, .

32

)

6.1 Selector Boxes

selectSingle :: Eq a => (a -> String) -> Maybe a -> [a]
-> HTMLField (InputField a INVALID)

selectSingle showFunction maybeDefault options
e a is type of selected values
e Eq a states that values must be comparable

® showFunction :: a -> String

maps a value to its menu entry (a string)
e maybeDefault is either Nothing or Just defaultValue

e options is the list of values from which to choose

33

Application in mdrill

do
mpyF <- p (text "Give me a multiplier " >>

selectSingle show Nothing [2..12] empty)

e show is Haskell-provided printing function
e Nothing: no default specified = form insists on an entry
e [2..12] list of options

e empty — no attributes for the selection box

34

6.2 Radio Buttons

® radioGroup attrs
— creates a radio group (an invisible widget)
— attrs are common attributes for all members
— the function value extracts the value from a radio group

— hence, all members have the same type

® radioButton radiogroup val

attaches a button returning val to radiogroup

® radioError radiogroup

specifies the location of the error indicator 7 for radiogroup

35

do
rptF <-
p (text
text
text
text

Application in mdrill

radioGroup empty

"Number of exercises " >>

"5 " ## radioButton rptF 5 empty >>
" 10 " ## radioButton rptF 10 empty >>
" 20 " ## radioButton rptF 20 empty >>

radioError rptF)

36

6.3 Constrained Textual Input Fields

For application-specific input formats like
e non-empty string
e email address
e amount of money

we can define customized input fields by
e creating application-specific datatypes
e defining a read syntax
e giving an explanatory text

(requires skill in Haskell programming)

37

Example: EmailAddress

e the application-specific datatype

newtype EmailAddress =

EmailAddress unEmailAddress :: String

unEmailAddress extracts the string value from EmailAddress

e the explanatory text

instance Reason EmailAddress where

reason _ =
"email address \

\{must contain @ and no special characters except . - _}"

38

Example: EmailAddress — continued

e defining a read syntax (not quite RFC2822)

instance Read EmailAddress where
readsPrec i str =

let isAddressChar c = isAlpha c || isDigit c¢ || c ‘elem®
(name, atDomain) = span isAddressChar (dropWhile isSpace str)
in case atDomain of

’@’ : domainPart ->
let (domain, rest) = span isAddressChar domainPart in
if null name || null domain
then []
else [(EmailAddress (name ++ ’Q@’ : domain)

,dropWhile isSpace rest)]
- >0

39

Example: EmailAddress — in use

main = run $
standardQuery "Enter Your Email Address" $
p (do text "Hi there! What’s your email address?"

activate getEmail inputField empty)

getEmail email =
standardQuery "Process Email" $

do p (text ("Hello " ++ unEmailAddress email ++ "!1"))
e created using inputField

e extract and fix type using

unEmailAddress :: EmailAddress -> String

40

7 Server-Side State

For the final report, we would like to have a “hall of fame” that

displays the best results for each student.

e Keep a mapping from names and multipliers to correct results on

the server

e Mapping is generally accessible from all clients

= concurrency control required

(invisible for programmer)

41

Considerations for Server-Side State

data is stored in textual format
conversion done using builtin Read and Show classes
type safety across program boundaries

class Types

(using problem-specific types requires Haskell expertise)
provide abstract datatype of persistent values

only indirectly accessible through handles

each handle has notion of current value

accessible throughout lifetime of handle

42

Initializing Server-Side State

® 1import Persistent2

import API for persistent values

®@ init externalName initialValue

a CGI action

allocates/accesses a persistent value named externalName

initialized with initialValue

only if persistent value is freshly created
returns Nothing if the value existed but had a different type

returns Just handle where the persistent value of type a is
accessible through handle of type T a

43

Accessing Server-Side State

Suppose handle :: T ais a handle to a persistent value of type a

e get handle

retrieves the persistent value

e set handle newValue
updates the persistent value
If successful, return a Just newHandle for the current value
returns Nothing if the handle is not current (if it was modified by a
concurrent process)

e add handle additionalValue
handle refers to a value of list type

adds additionalValue to the persistent list of values

e current handle

returns a newHandle that refers to the current persistent value

44

Per sistent

Process A Value Process B
h<-initpvO0 PV p
-h== 0->vO0
hb <-init pvl
X <-geth --hb ==
-X==v0 -- v1 discarded
0->v0 mhb <- set hb v2
1->v2 --mhb==Just 1
mha<- set hv2
-- mha == Nothing
-- h not current
curh <- current h
-- curh ==
x1<-geth
--x1==v0
x2 <- get curh
--X2==V2
set curh v3 0->v0
-- successful 1->v2
2->v3

45

Example: Final Report

import qualified Persistent2 as P
—-— abbreviate Persistent2 to P
finalReport =
do Just initialHandle <- P.init ("multi-" ++ name) []
currentHandle <- P.add initialHandle (mpy, lenSucc, rpt)
hiScores <- P.get currentHandle
standardQuery "Final Report" $
do p (text "Here are your recent scores.")
ul (mapM_ pItem hiScores)
where lenSucc = length successes
pltem (m, 1, r) = 1i (text ("Multiplier " ++ show m ++

" . " ++ gshow 1 ++ " correct out of " ++ show r))

46

APl Summary: Persistent2

init :: (Read a, Show a, Types a) =>

String -> a —-> CGI (Maybe (T a))
get :: (Read a) =>

T a -> CGI a
set :: (Read a, Show a) =>

T a ->a -> CGI (Maybe (T a))
add :: (Read a, Show a) =>

T [a] -> a -=> CGI (T [a])
current :: (Read a) =>

T a -> CGI (T a)

47

8 Client-Side State

A user should only be required to enter his name once
e store user name on client side

= store on client
e implemented using “cookies”

e ... but type-safe!
(errh, type-indexed)

e interface similar to Persistent?

e but no history maintained

48

Example

import qualified Cookie as C

main = run $
do nameC <- C.init "name" Nothing
mname <- C.get nameC
case mname of
Just name ->
mdrill name
Nothing ->
standardQuery "What’s your name?" $
p (do text "Hi there! What’s your name?"
activate (mdrillCookie nameC) textInputField empty)

mdrillCookie nameC name =
do C.set nameC (Just name)
mdrill name

49

Tour of Cookie API

e (Read a, Show a, Types a) =>

required for all storable types (cf. Persistent?2)

® 1init cookieName initialValue
a CGl action that
— creates a handle to client-side variable cookieName
— initializes to initialValue if the variable must be created
— always successful (names are type-indexed)

— returned handle is current

50

Tour of Cookie API, Part 2

® get handle
a CGI action that
— returns value associated to handle

— fails if handle is not current

usually due to improper behavior of user or programming error

® set handle newValue

— if handle is current, then overwrite with newValue and return
Just the new current handle

— if handle is not current, then return Nothing

51

init

get

set

delete

APl Summary: Cookie

(Read a, Show a, Types a) =>
String -> a -> CGI (T a)
(Read a, Show a, Types a) =>
T a -> CGI a

(Read a, Show a, Types a) =>
T a -> a -> CGI (Maybe (T a))
(Types a) =>

T a->CGI (O

52

9 Advanced Topics

9.1 Uploading Files

fileInputField :: HTMLField (InputField FileReference INVALID)

e value of type FileReference is a record

— fileReferenceName, a local file path (on server)

— fileReferenceContentType, content type of the file

— fileReferenceExternalName, provided by submitter

e FileReference is only temporary

e script responsible for renaming or copying to safe location

53

Example Uploader

main = run $
standardQuery "Upload File" $
do text "Enter file to upload "
fileH <- filelnputField empty
submit fileH display (fieldVALUE "UPLOAD")

display :: InputField FileReference VALID -> CGI ()
display fileH =
let fileRef = value fileH in
standardQuery "Upload Successful" $
do text "Check file contents "
submit FO (const (tell fileRef)) (fieldVALUE "GO")

e \Warning! Security problems may lurk!

54

9.2 Non-textual Responses

e tell :: CGIOutput data => data -> CGI ()
e transform data to CGI action that returns data to browser

e examples for data
— FileReference
— Element (HTML elements)
— String (generates text/plain document)
— Status messages
— Location (redirection)

— FreeForm contents:

FreeForm fileName contentType rawContents

55

Example: File Downloader

main = run $ standardQuery "SendFile" $ table $ do
pcNameF <- tr (td (text "File name") >>
td (textInputField (fieldSIZE 20)))
passwordF <- tr (td (text "Password") >>
td (passwordInputField (fieldSIZE 20)))
tr (td (submit (F2 pcNameF passwordF) sendFile (fieldVALUE "SEND")) >> td empty)

sendFile (F2 fileNameF passwordF) =
let fileName = value (unNonEmpty fileNameF)

password = value (unNonEmpty passwordF)
in if validPassword fileName password then tell
FileReference { fileReferenceName = storeDirectory ++ fileName
, fileReferenceContentType = guessContentType fileName

}

else htell $ standardPage "Login incorrect" $ backLink

56

9.3 Inlined Downloading

e standard link (no download button)

e still return arbitrary files
— accessible to script

— not necessarily accessible to Web server
= install a translator

e translator :: [String] -> CGI ()

maps path name to CGl action

57

Using a Translator

e replace run with runWithHook translator
e create a reference to a named item with makRef name attrs

e example:

translator (name:_) =
let fileName = storeDirectory ++ name in
do ex <- unsafe_io (doesFileExist fileName)
if ex
then tell FileReference
{ fileReferenceName = fileName
, fileReferenceContentType = guessContentType name

+

else fallbackTranslator [name]

58

9.4 Sending Email

e Deja Vue: message-as-text not appropriate
= create record data types for email contents and messages

e Email contents: data type DOC

mediatype :: String, -— type

subtype :: String, —-— subtype

parameters :: [KV], —-- parameters
filename ;1 String, -- suggested filename

-- depending on mediatype only one of the following is relevant:

messageData :: String, -- data
textLines :: [String], —-- lines
parts : : [DOC] -- data

59

Actual Interface

textDOC :: String -> [String] -> DOC
textDOC subty docLines

create a text document with content type text/subty
binaryDOC :: String -> String -> String -> DOC
binaryDOC mediaty subty bindata

arbitrary document with content type mediaty/subty

multipartDOC :: [DOC] -> DOC

multipartDOC subdocs

collect a list subdocs of documents into one

further possibilities (alternative, external, ...)

60

Datatype for Messages

e Mail is a record

to :: [String],
subject :: String,
cc :: [String],
bcc 1t [String],
headers X [Header],
contents :: DOC

e convenience function

simpleMail recipients subj doc

61

Example of Sending Mail

notifyAccept submission reports = do
instr <- io (readFile instructionsFile)
let opening = textDOC "plain"

["Dear " ++ itemAuthor submission ++ ","

nn
b

,"I am pleased to inform you that your paper"

, " "++ jtemTitle submission

,"has been accepted for presentation ..."]
instructions =

(textDOC "plain" (lines instr))

{ filename= "AuthorInstructions" }

notify [opening, instructions] submission reports

62

Example of Sending Mail (cont’'d)

notify frontmatter submission reports = do
let doReport report nr =
(textDOC "plain" (lines (reportForAuthor report)))
{ filename= "Review#" ++ show nr }
doc = multipartDOC (frontmatter ++ zipWith doReport reports [1..])
message = (simpleMail [itemEmail submission] "Notification" doc)

{cc= [chairperson]
,headers= [Header ("From", chairperson)]
}

exitcode <- io (sendmail message)
htell (standardPage ("Message sent. Exitcode = " ++ show exitcode) empty)

63

10 Conclusion

e simple, declarative approach to Web-based user interfaces
e types and type safety essential

o GUI-style programming interface

e natural interface to HTML

e ideas not tied to CGI

e applications: submission software, generic time table, . ..

e available from

http://www.informatik.uni-freiburg.de/ "thiemann/WASH

64

