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Abstract— People detection and tracking is a key component
for robots and autonomous vehicles in human environments.
While prior work mainly employed image or 2D range data for
this task, in this paper, we address the problem using 3D range
data. In our approach, a top-down classifier selects hypotheses
from a bottom-up detector, both based on sets of boosted
features. The bottom-up detector learns a layered person model
from a bank of specialized classifiers for different height levels
of people that collectively vote into a continuous space. Modes
in this space represent detection candidates that each postulate
a segmentation hypothesis of the data. In the top-down step,
the candidates are classified using features that are computed
in voxels of a boosted volume tessellation. We learn the optimal
volume tessellation as it enables the method to stably deal with
sparsely sampled and articulated objects. We then combine the
detector with tracking in 3D for which we take a multi-target
multi-hypothesis tracking approach. The method neither needs
a ground plane assumption nor relies on background learning.

The results from experiments in populated urban envi-
ronments demonstrate 3D tracking and highly robust people
detection up to 20 m with equal error rates of at least 93%.

I. I

People detection and tracking is a key skill for mobile
robots and intelligent cars in populated environments. While
most of the related work in this area used vision for this task,
range sensing is a particularly interesting sensor modality due
to its accuracy, large field of view and robustness with respect
to illumination changes and vibrations, the latter points being
of particular relevance for mobile observers.

In this paper we address two problems, detecting people
in 3D range data and tracking people in 3D space. We extend
our previous work on 3D people detection [1] by the tracking
stage and an additional top-down procedure in the detection
pipeline. This procedure aims at reducing false positives that
typically occur with sparsely sampled individuals at large
distances from the sensor. We further combine detection
with tracking and present results from a tracker this is able
to estimate the motion state of multiple people in 3D. To
this end, we employ a multi-hypothesis tracking approach
(MHT) by Reid [2] and Cox et al. [3]. In the experiments we
compare our approach with related techniques for detection
in 3D range data, in particular spin images [4] and template-
based classification.

While there is little related work for people detection
and tracking in 3D, many researchers addressed this task
using 2D range data. In early works [5], [6], [7], people are
detected using ad-hoc classifiers, looking for moving local
minima in the scan. The first principled learning approach

Fig. 1. Two persons are detected and tracked in 3D, one is descending a
flight of stairs. The z axis in the figure is magnified for clarity.

has been taken by Arras et al. [8] where a classifier for 2D
point clouds has been learned by boosting a set of geometric
and statistical features. As there is a natural performance
limit when using only a single layer of 2D range data, several
authors have been using multiple co-planar 2D laser scanners
[9], [10], [11]. In the field of people detection in 3D data,
Navarro et al. [12] collapse the 3D scan into a virtual 2D
slice to find salient vertical objects above ground. They align
a window to the principal data direction, compute a set
of features, and classify pedestrians using a set of SVMs.
Bajracharya et al. [13] detect people in point clouds from
stereo vision by processing vertical objects and considering
a set of geometrical and statistical features of the cloud based
on a fixed pedestrian model. Both of them can be seen as
top-down detection procedures.

Our approach extends the state-of-the-art in several as-
pects. First, all these works require a ground plane assump-
tion which prevents them from being true 3D methods. This
is not required in our case. We combine a top-down classifier
with a bottom-up detector and quantify the improvement
of this combination. We then compare our method to two
established 3D object detection techniques, spin images
and template-based classification, and demonstrate that with
equal error rates (EER) of at least 93% for people up to 20 m
afar, our approach clearly outperforms the alternative tech-
niques. Finally, we combine our detector with 3D tracking.

The paper is structured as follows: the combined bottom-
up top-down detection approach is presented in the next
section including the learning and the classification phase.
Tracking is described in Section IV. Section V contains quan-
titative comparisons and experimental results and Section VI
concludes the paper.

II. T -   3D  
In this section we briefly summarize the bottom-up detec-

tor from [1]. Let us first define the terms. By bottom-up we



Fig. 2. Overview of the approach. The 3D range data are first processed by
the bottom-up detector that generates candidate detection hypotheses (gray).
They are verified by the top-down procedure. Confirmed detections (green)
are finally tracked using a multi-hypothesis tracker (MHT).

denote the myopic scheme thats starts with local segments
of 2D range data and works up to a detection hypothesis in
3D. By top-down we mean the procedure that begins with a
predefined volume in 3D and the totality of data within that
volume and works down to a classification of these data.

The idea of the method presented in [1] follows the
observation that most 3D range finding devices acquire 3D
point clouds in slices or lines of (typically non-coplanar)
2D data. They include, for instance, the Velodyne HDL-64E
used here, the Alaska XT, or 2D laser scanners on turntables.
This enables us, in a first step, to reuse known and proven
techniques for detecting people in 2D range data that then
are combined to a 3D detector.

A. The learning phase

As a first pre-processing step, each scan line is divided
into segments using Jump Distance Clustering (JDC). JDC
initializes a new segment each time the distance between
two consecutive points exceeds a threshold θd. As a result,
the data is reduced to a smaller number of segments. Then,
each 2D segment is characterized by a set of geometrical
and statistical features. A total of 17 features are taken for
this task. They have been described in [8], [14], and [1] and
include, for instance, measures of compactness, convexity,
curvature, circularity, smoothness, etc.

To cope with the high level of variability in human
articulation and shape, we take a part-based approach and
subdivide humans into K different height layers. For each
height layer, called part πk, we create a classifier. This
leads to a bank of K independent part classifiers, each one
specialized for a certain height level. Segments of all scan
lines that fall into a part contribute to the learning of the
corresponding classifier. We use AdaBoost [15] for this task,
a well known machine learning technique that has been
proven successful already for detecting people in 2D range
data [8].

To combine the individual classifications from the parts we
use a voting model, loosely inspired by the implicit shape

model approach [16]. To learn this voting model, for each
segment Si that belongs to a part πk in the training set, we
store the 3D displacement vector from the segment center
to the center of the person. Then all displacement vectors
for part πk are collected and clustered using agglomerative
clustering with average linkage. The resulting vector is
called a vote. A weight is assigned to each clustered vote
(see [1] for details) such that parts with a higher articulation
variability (e.g. feet) receive a lower voting confidence.

Finally, as a practical interpretation of people in 3D we
compute the average bounding box B̄ =

(
w̄, d̄, h̄

)
from all

person samples, where w̄, d̄, h̄ represent the average width,
depth and height, respectively. For the top-down detector,
we align this volume by rotating it by the azimuth angle β
of the line through the sensor origin and the center of the
hypothesis (see Fig.3, right).

B. The detection phase

In the evaluation phase, we process newly arriving scans
by the JDC segmentation step to obtain a set of segments.
For each segment in each laser line, we compute the set of
features and classify it using all K boosted part classifiers.
We then compute a likelihood of the segment to belong to
each part derived from the weighted linear combination of
the weak classifiers. This likelihood serves as the weight of
the vote that each part classifier casts.

People detection hypotheses are finally obtained as high
density loci in the 3D voting space that are formed when
multiple parts vote consistently. These loci are found using
mean-shift mode estimation [17]. The score of a detection
hypothesis is computed as a function of the vote weights,
the number of votes, and the number of parts that contribute
to the locus. For more details, please refer to [1].

III. A -   3D  

With the approach just described, we achieved robust
detection of people up to 10 m from the sensor with an
EER of at least 95%. However, the EER dropped to 63%
for a range up to 20 m since at this distance, people get
sparsely sampled and are hard to distinguish from clutter.
Let us consider the reasons.

Bottom-up detection hypotheses represent evidence that
several segments at different heights vote consistently for
being a part of a person. This method has the advantage of
detecting people also from partial occlusions, when only a
part of the body is visible. The drawback is however, that
hypotheses can also be generated by segments in clutter that
happen to cast votes in a consistent manner. Further, in cer-
tain situations, the approach can produce mode ambiguities
in the voting space from symmetries. When two pedestrians
walk side-by-side for instance, each person creates a strong
mode in his or her center but also in between the two people
originating from the arms and legs of both. Interestingly,
these issues have also been noticed in visual voting-based
object detection techniques [18].

To overcome these problems, we propose an additional
top-down detection step that is still able to work with partial



Fig. 3. Left: Tessellations generated to select the best volume subdivision
for the top-down classifier. Right: Alignment of the volume for evaluating
hypothesis p (top view).

body views. This classifier will treat the bottom-up detections
as candidate hypotheses to be validated using an extended 3D
person model. See Fig. 2 for an overview of the combined
method.

A. The learning phase

Learning the top-down detector consists in two steps:
learning the best volume tessellation and learning the features
computed in this tessellation.

Volume tessellation

We aim to characterize the 3D shape of people by
computing features in a tessellated volume B̄. We choose
this subdivision approach since, in this way, local shape
properties can be well described. This leads to the question of
how a volume can be tessellated into sets of smaller volumes,
a problem well known as tiling in computational geometry.
For the sake of simplicity, we consider only axis-parallel
(but non-cubic) voxels which reduces the complexity of the
problem significantly. As there are still infinite numbers of
tessellations of B̄, we define some constraints: we predefine
the aspect ratios V that will be considered (to avoid voxels
with extreme proportions), and define the list of increments
∆v by which voxels will be enlarged. Each element v of V
is a width-depth-height triplet (w, d, h) that is a multiplier
coefficient of one of the voxel dimension.

The resulting procedure is Algorithm 1. The algo-
rithm generates all possible voxel sizes (subject to V
and ∆v), tests whether they can fill a volume B without
gaps and subdivides B into a regular grid. The function
Tess(B,w, d, h,∆w,∆d,∆h) generates a regular face-to-face
tessellation of B using the voxel (w, d, h), discarding protrud-
ing voxels and offsetting the resulting grid by (∆w,∆d,∆h).
Calling this function with an offset produces voxels that
also overlap each other (see also Fig.3, left). The algorithm
generates gapless subdivisions of B that are complete in that
no tessellation is missing under the given constraints.

We choose this tessellation approach as we want to be
able to describe shape at different scales. Further, we want
to allow the possibility that voxels can reflect the human
anatomy, that is, can correspond to body parts such as legs
or the head. Volume subdivisions with fixed-size voxels that
do not overlap are less likely to establish such mappings.

Algorithm 1: Compute all axis-parallel tessellations T
of a volume B̄.

Input: Volume B, set of allowed voxel aspect ratios V, list of voxel
size increments ∆v.
Output: Set of all possible tessellations T
T ← {}

foreach ∆v j ∈ ∆v do
foreach vk ∈ V do

w = ∆v j · vw
k ; d = ∆v j · vd

k ; h = ∆v j · vh
k

if floor(w, wB) = 0 ∧ floor(d, dB) = 0) ∧ floor(h, hB) = 0
then
T = T ∪ Tess(B,w, d, h, 0, 0, 0)
T = T ∪ Tess(B,w, d, h, w

2 ,
d
2 ,

h
2 )

end
end

end
return T

3D features

Given a tessellation Tj we characterize shape by com-
puting a set of geometrical and statistical features on the
points within each voxel. Together, the feature values from
all voxels make up an overall description of the human shape.
Let the i th voxel of Tj be T i

j , then a feature fk is formally
defined as the mapping fk: T i

j → � that takes the N points
P = {x1, . . . , xN} contained in T i

j and returns a real value.
We use the following nine features:
• Number of points: cardinality of T i

j denoted as n.
f1(T i

j ) = n
• Sphericity: this feature captures the level of sphericity

from the ratio of the eigenvalues λ1, λ2, λ3 extracted
from the scatter matrix computed on P. f2(T i

j ) = 3 λ3∑
i λi

where λ1 > λ2 > λ3.
• Flatness: this feature captures the degree of planarity

from the eigenvalues. f3(T i
j ) = 2 λ2−λ3∑

i λi
.

• Linearity: this feature captures the level of linearity from
the eigenvalues. f4(T i

j ) = λ1−λ2∑
i λi

.
• Standard deviation w.r.t. centroid: f5 =

√
1

n−1
∑

i (xi − x̄)2

where x̄ is the centroid. This is a measure of compact-
ness.

• Kurtosis w.r.t. centroid: this feature is the fourth central-
ized moment of the data distribution in T i

j . f6(T i
j ) =∑

i (xi − x̄)4/ f5(T i
j ). This is a measure of peakedness.

• Average deviation from median: f7 = 1
n
∑

i ‖xi−x̃‖ where
x̃ is the vector of independent medians x̃ = (x̃, ỹ, z̃). This
is an alternative measure of compactness.

• Normalized residual planarity: sum of the squared error
of a plane fitted into the data and normalized by n.
f8 =

∑n
i (a xi + b yi + c zi + d)2 where a, b, c, d are the

parameters of the plane derived from the eigenvalues of
the scatter matrix. This is also a measure of flatness.

• Number of points ratio: this feature measures the point
density of the voxel with respect to the entire volume
B: f9(T i

j ) = n
‖B‖

.

Training

The task for learning the top-down detector is to find
the tessellation that best suits the shape characteristics of



Fig. 4. Selecting the best volume tessellation and features. A set of features
is computed on the points within each voxel. All features of all voxels over
all tessellations are concatenated in a vector. These features are computed
for all people and background samples and they constitute the training set for
an AdaBoost classifier. The resulting strong classifier achieves the double
objective of selecting the best features and the optimal tessellation. The
final tessellation is shown and largely reflects the anatomy of the human
articulated body.

humans in 3D point clouds and to select the most informative
features for this purpose. The key idea is to boost both the
tessellations and features (Fig. 4).

In a first step, we generate the training data by aligning
the bounding box B̄ to the center of each positive sample
(people) and negative sample (background). The outcome of
this procedure is similar to a multiple view data set for people
detection in images [19]. For each positive and negative
sample, all features are computed for all voxels in the set
of all tessellations T . This leads to training vectors of the
form s = ( f 1

1 , . . . , f 1
9 , f 2

1 , . . . , f 2
9 , . . . , f V

1 , . . . , f V
9 ) where V is

the total number of voxels in the set of all tessellations T .
The training vectors along with their manually added label
{−1,+1} are then used to create an AdaBoost classifier with
decision stumps as weak learners. The training set contains
more negative than positive samples also to reflect the large
variety of shapes that background point clouds can have.
This imparity in the number of positive and negative samples
requires the adaptation of the initial sample weights for
which for follow the scheme in [1].

We train AdaBoost by adding weak classifiers until the
misclassification error is smaller than 1%. The resulting
strong classifier achieves a double objective, it selects the
best possible features for classification (where ‘best’ is
quantified by the voting weights), and implicitly selects
the optimal subdivision Topt of B̄. ‘Implicitly’ since Topt is
defined by the set of voxels in which the selected features
have been computed. The method has the flexibility to select
an arbitrary number of features in each voxel. A large
number means that the voxel contains a particularly salient
local shape. Note that the optimal tessellation can also be
composed of a mixture of voxels from different tessellations.

It is interesting to interpret the learned optimal tessellation
in Fig. 4. The subdivision largely reflects the anatomy of the
human articulated body. The most stable parts of the body are
the shoulder and above-knee areas which receive the highest

resolution. The parts corresponding to feet, hands, arms, and
the head (whereas the variability in the head area is caused
by the different heights of people) receive lower resolutions.
Further, the embedded vertically elongated voxels help to
discriminate people on a rougher scale, characterizing the
overall shape of humans as slender cylinders.

B. The combined detection approach
We finally put both detection cues together to form the

proposed bottom-up top-down approach (Fig 2). As soon
as a new scan arrives, the detection pipeline starts with
the bottom-up detector that postulates a set of candidate
detection hypotheses Ẑ. Then, the volume B̄ is centered and
aligned in these detection loci. The top-down detector comes
into play by computing the selected feature set on all points
in all voxels of the learned optimal tessellation Topt. Using
this ensemble of feature values, the learned strong classifier
validates the candidate hypotheses. Candidates for which the
top-down classifier returns a positive response make up the
set of positive detections Z(t) at time t.

IV. M H T
The detector presented so far is a single-frame detector

that generates detection hypothesis from a single scan. To
integrate this information over time, we track these hypothe-
ses to estimate the 3D position and motion state of people,
thereby smoothing the detector output.

For tracking, we employ a 3D implementation of the
Multi-Hypothesis Tracking approach (MHT) by Reid [2],
Cox et al. [3], and Arras et al. [20] able to filter full 3D
states and measurements. It is beyond the scope of this paper
to present this tracking approach in detail. We therefore give
a brief summary.

The MHT belongs to the most general data associa-
tion schemes that produces joint compatible assignments,
integrates them over time, and is able to deal with the
full life cycle of tracks (creation, confirmation, occlusion,
and deletion) in a consistent probabilistic framework. The
algorithm hypothesizes about all statistically feasible assign-
ments between measurements and tracks and all possible
interpretations of measurements as false alarms or new track
and tracks as matched, occluded or obsolete.

At time t, each possible set of assignments and inter-
pretations forms a data association hypothesis Ωt

i (not to
be confused with a detection hypothesis). Given the com-
binatorial complexity of assigning measurements to tracks
and distributing interpretation labels, there are many possible
hypotheses at each time step. Integrated over time, they form
an exponentially growing tree that needs to be pruned. To this
end, a probability is computed for each hypothesis, reflecting,
for instance, the probability of measurements being false
alarms or tracks entering the field of view. Then, only the
best Nhyp hypotheses are retained. One of the key factors
that makes the MHT a real-time procedure is that these Nhyp

hypotheses can be determined directly in polynomial time.
The tracker produces a set of tracks that estimate the

filtered position and velocity of people in 3D (see Fig. 1
for an example track).
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Fig. 5. Comparison of the bottom-up top-down detector (BUTD) with the
bottom-up (BU) approach in [1]. The Equal Error Rate (EER) of the BUTD
approach is at least 93% over all ranges in both data sets. The performance
gain of BUTD over BU is particularly evident for far away detections. Left:
Precision recall graph for the Tannenstrasse data set. Right: Precision recall
graph for the Polyterrasse data set.

V. E

We evaluate our algorithm on two outdoor data sets
collected with a Velodyne HDL 64E S2 laser scanner. The
first data set, named Polyterrasse, has been collected in a
large area in the front of the ETH Zurich main building,
accessible only to people and bicycles. The second data set,
Tannenstrasse, has been collected on a busy street crossing in
downtown Zurich with trams, cars, pedestrians, and bicycles.
We have collected 900 full-view point clouds for the first data
set and 500 for the second data set. The sensor rotates with a
frequency of 5Hz at a maximum range limited to 20m. This
produces around 120,000 points per 3D scan.

A. Training

We labeled each frame manually by placing bounding
boxes around people if they are represented by at least
200 points and exceed 1.20m in height. A second type of
annotation, explained later, is made for people with at least
100 points and 1m height. We considered only subjects with
heights ±15cm from the mean. This leads to 455 samples of
people from all possible view points, standing still and walk-
ing, and 6025 samples of background. The constraints for the
tessellation algorithm are ∆v = (0.2m, ..., 0.8m) and V being
{1, 1, 2.5} , {1, 1, 5} , {1, 1, 1.25} , {1, 1, 1} , ..., {4, 4, 4}, and the
permutations of {1, 1, 2} , {1, 1, 3} , {2, 2, 3} , {4, 4, 3} , {4, 4, 2}
These constraint produce a minimal voxel dimension of
0.2m. This rather large value has been set to ease detection
in case of imprecise placement of detection hypotheses with
respect to the object centers. The training error objective
for the top-down approach of 1% has been reached with 95
decision stumps.

B. Detector Evaluation

In this section we present experimental results and com-
parisons with other detection techniques. For the quantitative
analysis, we adopt the no-reward-no-penalization policy from
[21]. The policy does not count true or false positives when
a detection matches an annotation of the second type.

In the first experiment, we compare the performance of
the combined bottom-up top-down detector (BUTD) with the
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Fig. 6. Comparison of the bottom-up top-down detector (BUTD) with the
template based approach (TEMP) and the spin image-based bag-of-words
approach with several dictionaries (SPIN20-SPIN500) in [0, 20m] range.
None of the compared technique achieves the performance of BUTD. The
SPIN method is apparently not able to generalize the articulated shape of
people and/or their sparse representation at large distances. Further, a large
dictionary (500 words) leads to overfitting. TEMP achieves good results only
in the data set with simple background. Left: Precision recall graph for the
Tannenstrasse data set. Right: Precision recall graph for the Polyterrasse
data set.

bottom-up approach presented in [1] (Fig 5). The Equal Error
Rates (EER, where precision equals recall), of the new ap-
proach over the distance ranges from the sensor of [0, 10m],
[0, 15m], and [0, 20m] are 95.4%, 94.5%, and 93.4% for
the Tannenstrasse data set and 97.6%, 97.2%, and 96.2%
for the Polyterrasse data set, respectively. BUTD clearly
achieves much better performance in terms of precision-
recall, particularly for individuals at large distances from the
sensor where BUTD shows an improvement of over 30%
over the BU technique. Thus, the main role of the top-down
detector is to remove false positives and to reinforce weak
detections of the BU approach. Similar insights have been
gained for other bottom-up top-down detectors in computer
vision [16]. We see the identical improvement in both data
sets as indication for good generalization capabilities of the
new algorithm.

In a second set of experiments, we compare the pro-
posed approach to two established 3D object detection tech-
niques: spin images (SPIN) and template-based classification
(TEMP). We first describe our implementation of both tech-
niques before discussing the results.

TEMP training: To each positive training sample, we align
the volume B̄ as shown in Fig.3 and subdivide it using cubic
cells of size 0.2m. The cells represent bins of a template
histogram H . If a point of a sample lies within a cell, the
associated histogram bin is incremented. All positive training
samples are used to learn the model Hm. The histogram is
then normalized to one.

TEMP detection: To every candidate detection hypothesis
from the BU technique, we align the volume B̄ and compute
a histogramHz using the same procedure employed for train-
ing. The histograms are then matched using an Euclidean
distance d(Hm,Hz).

The SPIN approach follows the 3D bag-of-words detection
scheme [22]. The method represents point clouds as collec-
tions of local descriptors ignoring their spatial disposition.

SPIN training: We compute spin image descriptors for
both the positive sample set and the negative set. For each



sample we randomly draw 160 spin image descriptors in
a regular 3D grid of 0.2m resolution in the volume B̄.
Spin images have a resolution of 0.1m in each dimension.
289, 415 descriptors are collected and clustered using k-
means with an implementation optimized for large data sets
[23]. The number of clusters is varied to be 20, 150, 300 and
500 which creates several dictionaries of words where each
word corresponds to a cluster center. From these words a
histogram is derived that holds the frequency of how often
a word appears in the considered sample. Finally, we create
an AdaBoost classifier from the set of all positive and all
negative histograms, thereby boosting the words, using 100
decision stumps.

SPIN detection: The same grid used for training is used
for sampling spin images around all candidate detection
hypothesis. Each spin image is matched to every word of
a dictionary and associated to the one with the smallest
Euclidean distance. These words are then used to build the
histogram that is fed into the learned strong classifier.

The results for the TEMP comparison for the range
[0, 20m] are shown in Fig. 6. The method clearly under-
performs with respect to the new BUTD method on both
data sets. It achieves an EER of more than 75% on the
Polyterrasse data sets but mainly due to the simplicity of
the background. For the more complex Tannenstrasse data
set, the EER is as low as 7.7% over the [0, 20m] range.

The results for the SPIN comparison for the range [0, 20m]
are shown in Fig 6. The EER for each dictionary is 11.8%,
12.7%, 12.7%, 10.8% for the Tannenstrasse and 31.2%,
33.6%, 39.5%, 21.9% for the Polyterrasse data sets. For
none of its parameters, the SPIN approach is able to be on
par with our detector. It is interesting to note that a large
dictionary (500 words) causes overfitting and the classifier
underperforms with respect to more compact dictionaries.
Similar effects have been noticed in the field of computer
vision [24].

Discussion: The poor performance of the template-based
technique is apparently caused by the fact that it is not
based on a discriminative classifier and that shape is merely
encoded by distributions of point densities over a fixed
tessellation. The spin image descriptors also rely on a fixed
space subdivision and a single feature (projected distances
onto a fitted local plane). In contrast, our method boosts a
set of features (in which point density is just one) and learns
the tessellation. Thus, we are able to learn the locations
and scales at which features are computed to characterize
shape stably and robustly, enabling the method to deal
with complex articulated shapes. Another reason for the
poor performance of the spin image-based technique is that
descriptors depend on the estimation quality of local normal
vectors. For sparse and noisy measurements, which is the
case for this kind of 3D data, this can pose a problem.
A major advantage of our top-down detector is that it has
no parameters. There are constraints for the tessellation
algorithm or a misclassification bound for AdaBoost. But this
is unlike the spin image bin resolution, the scale (number of
bins) or the number of dictionary words. These parameters

TABLE I
T  : BUTD  BU.

Data set MOTP MOTA FN FP ID
BU (Tann) < 0.16m 26.2% 51.4% 22.1% 6
BUTD (Tann) < 0.16m 73.6% 16.9% 8.2% 30
BU (Poly) < 0.16m 23.1% 18.7% 57.7% 11
BUTD (Poly) < 0.16m 89.1% 2.6% 7.6% 20

strongly influence the behavior of the methods. To find good
values typically requires tuning and experience.

A C++ implementation of the bottom-up top-down detec-
tor, not optimized for speed, processes around 120,000 points
per 3D scan and runs at ∼ 1Hz on a standard PC.

C. Tracking Evaluation

To evaluate our 3D tracking results, we use the
CLEAR MOT metrics [25] as measure. The metric counts
three numbers with respect to the ground truth that are
incremented at each frame: misses (missing tracks that
should exist at a ground truth position, FN), false positives
(tracks that should not exist, FP), and mismatches (track
identifier switches, ID). From these numbers, two values
are determined: MOTP (average metric distance between
estimated targets and ground truth) and MOTA (the average
number of times of a correct tracking output with respect to
the ground truth).

For the purpose of this evaluation, we manually annotated
the tracks in both data sets based on both types of annota-
tions. This includes the annotations used for the no-rewards-
no-penalty policy that are particularly difficult to detect due
to a low point density.

We compare the MHT tracking performance using the
BU detector and the combined method (see Table I). The
experiments have been run with NHyp = 100 number of
hypotheses where larger numbers for NHyp have not led to
a different behavior. The performance gain of the BUTD
method versus the BU detector is evident for both data sets.
The MOTA index is 2.8× higher in the Tannenstrasse and
3.8× higher in the Polyterrasse data set. The MOTP index
is constant in all cases. In both data sets, the value of FN
is at least 3× smaller while the value of FP is at least 2.8×
smaller. The number of track confusions, ID, is higher for
the combined approach simply because many more targets
are tracked over longer periods of time. In comparison, the
BU method is only able to track targets shortly and at close
range to the sensor.

The average cycle time of our MHT system, optimized for
speed, is ≤ 5ms for each 3D scan on a standard PC.

VI. C

In this paper we presented a combined bottom-up top-
down detector for people in 3D range data. Unlike prior
work, no ground plane assumption is needed. The bottom-
up detector generates candidate detection hypotheses that are
validated by a top-down procedure. The top-down method
relies on a novel technique that boosts both features and the
volume tessellation in which the features are computed. This



Fig. 7. Qualitiative comparison of MHT tracking and detection with BUTD and BU in an urban scene (Tannenstrasse data set). Red circles represent false
positives, magenta circles false negatives. Left Bottom-up detection only: false positives are detected in clutter and generate false tracks, two people are
not detected due to point cloud sparsity. Right Bottom-up top-down detection, every person has been correctly detected and tracked, the asterisk indicates
correct detection of a sparsely described target (annotation of the second type).

allows the detector to characterize local 3D shape on multiple
scales and at different locations, giving it the ability to stably
deal with sparsely sampled and articulated objects.

In experiments with two different data sets in cluttered
urban environments we achieved highly robust detection of
people in up to 20m distance from the sensor with equal
error rates of at least 93%. The method clearly outperforms
two established 3D object recognition methods namely spin
images and template-based classification. Opposed to these
methods, the top-down detector is also parameter-free.

The confirmed detection hypotheses are then fed into a 3D
implementation of a multi-hypothesis tracker. We quantified
how much the newly introduced top-down detector also
improves tracking in comparison with the bottom-up detector
using the CLEAR MOT metrics. The experiments show that
we are able to robustly track people in 3D.
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