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Abstract—The ability to act in a socially-aware way
is a key skill for robots that share a space with humans.
In this paper we address the problem of socially-aware
navigation among people that meets objective criteria
such as travel time or path length as well as subjective
criteria such as social comfort. Opposed to model-
based approaches typically taken in related work,
we pose the problem as an unsupervised learning
problem. We learn a set of dynamic motion proto-
types from observations of relative motion behavior of
humans found in publicly available surveillance data
sets. The learned motion prototypes are then used
to compute dynamic cost maps for path planning
using an any-angle A* algorithm. In the evaluation
we demonstrate that the learned behaviors are better
in reproducing human relative motion in both criteria
than a Proxemics-based baseline method.

I. Introduction

With robots entering our daily lives, their ability to
perceive, understand, and act in a socially conform way
is becoming a key requirement for many application
scenarios. Research in the area of socially-aware nav-
igation and manipulation is typically taking a model-
based approach, either with manually designed models
or models from social psychology and cognitive science
[13, 16, 14, 9, 12, 17]. Although this appears to be a
compelling approach, the use of such models in robotics is
potentially problematic due to an inherent methodological
gap: the experimental method of these fields isolates and
studies an aspect of interest under controlled conditions.
In contrast, the robotics community seeks to take robots
out of the controlled laboratory setting into the complex
real world full of unpredictable events.

Examples include the work of Pacchierotti et al. [13]
on a navigation system for hallways based on Hall’s
Proxemics theory [4]. However, Proxemics is the study
of measurable distances between people as they inter-
act, not walk past someone. The authors in [16] also
use Proxemics in combination with a back space model
that describes the discomfort of trajectories that pass
behind a person for a dynamically navigating robot in a
populated environment. However, the latter model was
derived from behavior of male subjects in a lavatory
context [11] and it is questionable if it extends to robots
in a general crowd. A robot collision avoidance system
based on a social force model [6] is proposed in [17].
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Fig. 1. Socially-aware navigation among humans. Two pedestrians
(blue and gray) avoid each other. The learned relative motion
prototype (in green) resembles the path of a real person (in gray)
while a Proxemics-based baseline path (in red) contains unneces-
sary heading changes and is longer.

But the model was developed to describe the behavior
of dense pedestrians crowds.

Other works rely on manually designed ad-hoc models
not directly derived from other cross-disciplinary fields.
In [12], a standing in line behavior of a robot was engi-
neered. In [9] the authors define cost functions for human
preferences, visual constraints and a comfort score to
achieve socially acceptable hand-over motions.

In all these examples, it is questionable if the employed
models scale to the operational conditions of a robot in
the complex real world. We thus believe that socially-
aware behavior should be learned from real data. We
extend the current state of the art by learning a socially-
aware navigation model from observations of humans,
acquired and used under the same real-world conditions.

The work by Henry et al. [7] also takes a learning
approach to a similar problem. However, the authors
address the problem of learning a planning strategy
through streams of pedestrians rather than learning con-
tinuous sensory-motor motions. Using inverse reinforce-
ment learning with features such as density and flow
direction, their agent learns to plan minimum hindrance
paths through simulated pedestrian streams. Here, in
contrast, we are addressing the (lower-level) problem
of learning continuous motion prototypes that are con-
sidered socially acceptable while being task-efficient in
terms of time or path length. Most importantly, we learn



Fig. 2. Top view of the environment monitored in the EIPD data
set. The size of the area is 15.8m×11.8m. The white arrows depict
entry or exit points for people in the scene. The overlayed colored
plots show example walking paths of people in the environment.

this from real data on human motion as opposed to
simulated pedestrians.

To this end, we take annotated surveillance data sets
collected from overhead cameras (see Fig. 2), extract
the pedestrian paths, and transform them into a 3D
representation. We then learn human relative motion
behavior in an unsupervised way which will result in
a set of dynamic motion prototypes that enable the
robot to compute a dynamic cost map and plan socially
acceptable avoidance maneuvers among humans that
reflect the learned relative motion behaviors. Finally, we
evaluate the models with respect to the human behavior
to see how well they generalize to never seen instances of
human behavior.

The paper is organized as follows: the next section
presents the unsupervised learning approach of relative
motion prototypes followed by section III that describes
how a dynamic cost map is derived from the learned
behavior and how planning is made on such maps. Sec-
tion IV contains the evaluation of the learned motion
prototypes and section V concludes the paper.

II. Learning Relative Motion Prototypes

In this section we present the theory for learning
socially-aware relative motion prototypes (RMP). First
we give their formal definition thereafter the procedure
for unsupervised learning is explained.

Human spatial motion is influenced by many factors
such as goal position, obstacles in the way, other people
and social norms. The dependencies among these vari-
ables are complex in particular when multiple people are
involved. Thus, we break down the problem into pairwise
relationships and consider the movements of only two
persons at once in relation to their goals. The practice
of analyzing only pairwise relations between variables is
common to ease the modeling of complex many-to-many

Fig. 3. The key parameter used in this work to learn and reproduce
socially-enabled behaviours is the angle of approach αij that is
measured between the space-time trajectories of the two persons.

relationships. Examples include graphical models [5, 8].
A relative motion prototype Ri,j describes a relative

motion between person πi and person πj . Given the two
observation sequences zi and zj of their (x, y)-positions
over time t, we define

di,j(t) = ‖zi(t)− zj(t)‖
Ri,j = [di,j(ts), ... , di,j(te)] (1)

with [ts, te] being the duration of the prototype. As we
consider sequences of discrete observations, the function
R becomes a set of distances

Ri,j = {di,j(ts), ..., di,j(te)} (2)

defined on the interval {ts, ..., te} of discrete time indices.
The definition of Ri,j encodes the relative motion be-
tween two persons invariant to their absolute position
and orientation in the environment.

A. Clustering Sequences of Relative Motion

To learn relative motion prototypes in an unsupervised
manner, we take an hierarchical clustering approach.
As relative movement sequences can differ in duration
and relative speed, we have to define an appropriate
distance function able to group similar motion behaviors
into the same cluster (further referred to as prototype).
Concretely, we use hierarchical agglomerative clustering
with average linkage (see [3]) and distance function cal-
culated with a modified Dynamic Time Warping algo-
rithm (DTW, see [15]). DTW is an algorithm originally
developed in the field of speech processing for matching
sequences of spoken language at different speeds. We
extend the regular DTW algorithm by introducing an
asymmetry into the weights to each operation. This leads
to the asymmetric DTW (aDTW) shown in Algorithm 1.
Three operations are considered when two sequences are
compared: insertion, deletion and matching. The asym-
metric DTW algorithm penalizes insertion or deletion
operations depening on the length of the two sequences to
compare. If the first sequence is longer compared to the



Algorithm 1: Asymmetric Dynamic Time Warping

input : Sequence s of length n, sequence t of
length m, penalty β

output: Distance between sequences s and t

// initialization
for i := 1 to n do

aDTW[i, 0] := ∞;

for j := 1 to m do
aDTW[0, j] := ∞;

aDTW[0, 0] := 0;

// compute penalty for operations
if n > m then

c1 := β; c2 := 1

else
c1 := 1; c2 := β

// compute similarity
for i := 1 to n do

for j := 1 to m do
cost:= dist(s[i], t[j]);
aDTW[i, j] := cost + min(

c1 ·aDTW[i-1, j], // insertion
c2 ·aDTW[i , j-1],// deletion
aDTW[i-1, j-1] // matching
);

return aDTW[n, m];

second one insertions are penalized, otherwise it penalizes
deletion operations. The insight is that aDTW leads
to low costs between two sequences when one of them
can be transformed into the other by a simple uniform
time rescaling. Moreover, aDTW allows to tune the
desired uniformity by adjusting the stiffness parameter
β. As opposed to regular DTW, the proposed distance
is ideal for clustering sequences in which preservation of
the qualitative shape up to time scaling is important.
During clustering, we compute the centroids by averaging
the two closest relative movement sequences. This is
done along the correspondences found by the aDTW
procedure via linear interpolation and averaging. The
resulting sequence is stretched to the length of the longer
sequence.

B. Social Context Model Selection

If all observed motion sequences were clustered at this
point, we would obtain meaningless results as the goal
and other variables that influence human motion are not
considered yet. Thus, in this section, we present a method
to account for these factors by modeling and recognizing
the social context that gives rise to a certain normative
motion behavior.

The problem can be posed as a model selection prob-
lem: how many different social context situations need
to be distinguished to optimize the trade-off between

Fig. 5. Visualization of a set of learned relative motion prototypes
(RMP) encoding five different social context situations. The dashed
horizontal black lines show the boundaries of the Personal space as
defined in the Proxemics theory. The learned models clearly intrude
the Personal space indicating that the Proxemics theory is invalid
for walking people. This finding reinforces our motivation to take
a learning approach to the problem.

data likelihood and model complexity? If we increase
model complexity and consider many situations, the
learned prototypes will overly explain the relative motion
behavior in each context due to overfitting. If we decrease
model complexity and distinguish only few situations, the
prototypes generalize well but are poor explanations of
the data. To resolve this trade-off, we consider a measure
similar to the Bayes Information Criterion (BIC) that
selects among a finite set of models to balance the
generalization error and model complexity.

Concretely, we use the angle of approach αi,j between
the two subjects πi and πj as the criterion to quantify and
distinguish what we define here to be a social context (see
Fig. 3). This choice is motivated by insights from social
psychology [1, 11] where indication was found for this to
be an important factor in modeling interpersonal comfort
and motion behavior. We estimate the angle of approach
αi,j by tracking the persons and predicting their future
trajectories. To this end, we employ a Kalman filter with
state components position, orientation, and velocity and
a constant velocity motion model. As soon as the filter
is initialized and has reached steady-state (usually after
three or four steps), we obtain a stable estimate for αi,j .
Since we are interested in behavioral changes only caused
by nearby subjects, we also compute the closest distance
between the extrapolated trajectories and consider only
pairs of pedestrians that approach each other closer than
a threshold distance.

We then determine the optimal number n of social
contexts, that is the optimal number of αi,j-intervals. We
start with n = 1 context and group all motion sequences
into a single RMP generated with all angles of approach
αi,j ∈ A where A = [0, 2π). Next, the goodness-of-fit
term in the BIC is computed. We continue by increasing
n, splitting A into two intervals. The procedure stops
when the optimum BIC value is found. We finally define
P = {Rα1

i,j , ....,R
αn
i,j } to be the set of relative motion
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Fig. 4. Cost map evolution over time as generated by the fixed-distance baseline method (top) and our method (bottom). The darker the
color the higher the costs. Top: The specified distance around the person does not change over time leading to an overly long avoidance
maneuver around it. Bottom: The proposed technique based on relative motion prototypes produces a dynamic cost map whose high-
cost radius changes over time producing a path that does not overshoot and better resembles the original human motion behavior in this
situation.

prototypes composed of n elements that refer to n social
contexts. An example of P with five social contexts is
shown in Fig. 5.

III. Planning with RMPs

Given n relative motion prototypes, this section
presents the methods employed to derive socially-aware
paths from the learned models. This includes the steps
of social context detection, cost map computation and
planning.

A. Social Context Detection

The recognition of the social context that enables
the robot to select the appropriate prototype R∗ from
P is done in the same way than the model selection
in the training phase described above. As soon as a
Kalman filter-based person tracker delivers stable state
estimates after initialization, we predict the trajectory
into the future to determine the angle of approach α (see
Fig. 3) and its corresponding model R∗. The selected
RMP is finally time-warped to match the velocity of the
approaching subject.

B. Cost Map Computation and Path Planning

The selected motion prototype R∗ is then used to
derive a dynamic cost map in a regular grid tessellation
of the environment. This is done by computing a time-
varying cost function for each grid cell that follows the
learned distances di,j(t) as specified by R∗. As cost func-
tion we use a Gaussian distribution with mean z(t) and
standard deviation σ = di,j(t)/3 at time t laid over the
grid. This leads to smooth dynamic cost peaks around
human subjects. The costs are updated in each step over
the entire duration of the interaction (see Fig. 4).

Based on these costs, we employ a Theta∗ planner [2]
with a L2-norm heuristics. Theta∗ is an any-angle A∗

variant that is not constraint to paths formed by edges
of the grid. This results in more natural and shorter any-
angle paths with fewer heading changes than A∗-paths.
We replan the path each time the cost map is updated.

IV. Experiments

A. Data Set

We use the Edinburgh Informatics Forum Pedestrian
Database (EIPD) [10] to learn the behavior of walking
people. The data set has been collected with a stationary
overhead camera at 23m height that observes a university
hall of dimensions 15.8m × 11.8m over a duration of
several months. The data files contain annotated tracks
of people defined as sequences of x and y coordinates of
their center of gravity. A view of the scene is shown in
Fig. 2.

B. Training

We have taken 90 pairwise interactions of people
consisting in 180 tracks to learn the relative motion
prototypes P as described in Section II. As the provided
annotations contain many double entries, missing or
merged labels we had to manually inspect the trajectories
to ensure that we learn only from correctly annotated
examples. The BIC procedure returned a best value of
n = 5 with angles of approach being 45◦, 90◦, 135◦,
and 180◦. The DTW distance function renders matching
invariant to track velocity but the case for zero velocity,
that is when one person is standing still, required special
treatment since the motion direction estimation is unde-
fined. This yields the fifth prototype for which no angle
of approach is defined.



DW-A∗ DW-Theta∗ AD-A∗ AD-Theta∗

Proxemics 20.31 17.70 0.43m 0.39m

RMP 9.08 8.95 0.20m 0.21m

Improvement 55.3% 49.4% 53.5% 46.2%

TABLE I

Comparison of similarity between planned (RMP) and

original path, used as the subjective measure. The

Proxemics-based baseline is clearly less able to reproduce

human relative motion.

A∗ Theta∗

Proxemics +36.1% +29.0%

RMP +14.7% +11.9%

Improvement 59.3% 58.9%

TABLE II

Comparison of relative path length used as the objective

measure. The percentages are relative to the original

path by the human subjects which would be 0%. The

proposed technique (RMP) is clearly more efficient than

the baseline with every combination of planners.

The learned prototypes in P are shown in Fig. 5
together with the distances that mark the inner and
outer border of the Personal space according to the
Proxemics theory. It is interesting to note that intrusion
into the Personal space by walking subjects appears to
be common whereas for interaction such a nearness is
accepted only for individuals of small social distance such
as good friends or family members. The intrusion appears
to be acceptable even if one of the subjects is standing.
This is a finding that confirms our skepticism toward
model-based approaches for the reasons listed in Section I
and shows that a Proxemics-based avoidance strategy
would lead to an overly conservative and inefficient robot
motion behavior.

C. Quantitative Results

For testing we evaluate the learned models on a differ-
ent set of 182 pairwise interactions. For each interaction
we replace the path of one of the two persons (picked
randomly) by a path generated with our system keeping
the start and end positions fixed. We then quantify the
performance of our system by computing two measures,
an objective one – the path length – and a subjective
one. As it is common to many HRI-related problems,
we assume that social acceptability or comfort is highest
when the robot exhibits the same behavior as a human.
Accordingly, the subjective criterion is the aDTW dis-
tance (DW) which quantifies the similarity between the
planned path and the original path of the human. We
compare two variants of the proposed approach, one that
makes use of Theta∗ planning and another one that uses
standard A∗. They both operate on a grid with square
cells of size 0.05 meters. As a baseline, we replace the
distance functions R in the learned RMPs by a fixed

(a)

(b)

(c)

Fig. 6. Visualization of the planned paths using the learned
relative motion prototypes and the paths originally taken by human
subjects. The left column shows the original paths of the two
persons as black and blue lines. The walking directions are marked
by arrows. In the center and right columns, we replace the path of
“person 2” by the Proxemics-based baseline method (red) and the
planned path from our RMP approach (green). For planning either
A∗ (center) or Theta∗ (right) is used. The images clearly show the
advantage of our approach with respect to both objective (path
length) and subjective criteria (similarity to human path).

distance dProx derived from the Proxemics theory. This
results in an avoidance behavior that seeks to keep the
robot always dProx meters away from humans. As dProx

we have taken the outer bound of the Personal space,
that is, dProx = 2.0 meters as the average distance of the
Social space (see [4]).



The results are given in Table I. Low values indicate
high similarity between the planned and the original
paths. The proposed RMP approach clearly outperforms
the Proxemics-based baseline by almost 50% with every
combination of planners. To confirm that this result is
not due to our modification of the DTW algorithm, we
also compute another error metric, namely the average
distance (AD) with respect to the closest point. The
improvements are almost identical.

As the objective measure to evaluate the learned
prototypes, we compute the relative length difference
between the planned and the original path in percent.
The results of the comparisons are shown in Table II. The
baseline using a fixed distance performs modestly (up to
36% longer than the original trajectory) and results in
longer paths than the learned RMPs whose length is only
increased by 15%.

A visualization of three example interactions with
varying angles of approach is shown in Fig. 6. It can be
seen that the learned prototypes are able to reproduce
the relative motion of humans to most extent while
the baseline is overly conservative and contains more
unnecessary heading changes.

V. Conclusions

In this paper we have addressed the problem of learn-
ing and reproducing motion behavior of walking people
for the task of socially-aware robot motion panning
among humans. Opposed to related work, we have taken
a learning approach to the problem using observations of
humans in publicly available large-scale surveillance data
sets. The approach uses unsupervised learning to produce
a set of Relative Motion Prototypes (RMP). RMPs are
experimentally shown to optimize both an objective and
a subjective performance measure and to decrease the
errors by a factor of two. Further, paths generated with
RMPs are similar to human paths and clearly outperform
a Proxemics-based baseline method.

In future work, we plan to extend relative motion
prototypes for multiple people and implement them on
a real robot. RMPs can be elegantly combined by super-
position of their individual cost maps and preliminary
experiments with multiple persons have shown that the
resulting motion behavior is natural and efficient. Fur-
thermore, the current method runs in real-time but it
is not computationally efficient since replanning occurs
frequently with a dynamically updated cost map. We will
thus consider incremental Theta∗ planners able to build
on previous search results.
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