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Abstract. A session type is an abstraction of a set of sequences of het-
erogeneous values sent and received over a communication channel. Ses-
sion types can be used for specifying stream-based Internet protocols.
Typically, session types are attached to communication-based program
calculi, which renders them theoretical tools which are not readily us-
able in practice. To transfer session types into practice, we propose an
embedding of a core calculus with session types into the functional pro-
gramming language Haskell. The embedding preserves typing. A case
study (a client for SMTP, the Simple Mail Transfer Protocol) demon-
strates the feasibility of our approach.
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1 Introduction

Much foundational work on calculi for concurrency is devoted to studying syn-
chronous, one-shot communications, for example, CCS [20], the π calculus [21],
the chemical abstract machine [5], the join calculus [9], and the M-calculus [32].
However, in particular in distributed systems, the cost of one-shot communica-
tions can be too high because a new connection must be established for each
message and synchronous operation may be too restrictive. Hence, calculi and
programming languages have been developed that are either based on asyn-
chronous communication [14] or that incorporate channel-based communication
primitives [12, 25, 29]. Once a channel has been created, many distinct messages
may be communicated through it. Channels are often homogeneous, that is, all
messages must have the same type.

Session types [10] have emerged as an expressive typing discipline for hetero-
geneous, bidirectional communication channels. In such a channel, each message
may have a different type with the possible sequences of messages determined
by the channel’s session type. Such a type discipline subsumes typings for data-
gram communication as well as for homogeneous channels. Session types have
been used to describe stream-based Internet protocols such as POP3 [10, 11].

A regular language on atomic communication actions describes the sequence
of messages on each channel. The channel type specifies this language with a fix-
point expression. Each operation peels off the outermost action from the channel
? {neubauer,thiemann}@informatik.uni-freiburg.de



l ∈ Label
Definitions
d ::= x = Op(x̃) | rec x(x̃) = e

| Send l(x) | Close ()
Expressions
e ::= Halt | Let d in e | If x then e else e | x (x̃)

| Receive [g]
g ::= l(x) → e | g, g

Types
τ ::= b | τ̃ , γ → 0
Type Environments
Γ ::= ∅ | Γ (x : τ)
Session types
γ ::= ∅ | ε | [η] | β | µβ.γ
η ::= `(b) : γ | η, η

` ::= l | l

Fig. 1. Syntax

type so that each operation changes the channel’s type. For that reason, channels
should not be duplicated but rather be treated linearly by the type system.

The resulting type system is amenable to type inference using techniques
developed for recursive types. Session types are compatible with polymorphic
type inference [15]. However, thus far no mainstream programming language
supports session types, so it is hard to take advantage of them in practice.

The present work demonstrates how to embed session types into a functional
programming language with a sufficiently powerful type system. (Extended)
Haskell fits this bill, but other languages with constrained type systems would
be suitable, too [33]. In particular, type classes with functional dependencies [16]
are required to model the progression of the current state of the channel and
functions with polymorphic parameters are required to model client and server
side of a communication with one specification [23].

The main contribution of the present work is an encoding of session types
in terms of type classes with functional dependencies. A key technical problem
is the encoding of fixpoint (µ) expressions that occur in the description of the
regular language mentioned above. We define a typed translation from a calculus
with session types into Haskell and prove its soundness. Finally, we demonstrate
the practicability of our approach with a case study, a typed client for the Simple
Mail Transfer Protocol (SMTP) [30].

The paper is structured as follows. Section 2 defines a small calculus for asyn-
chronous communication with session types. Section 3 specifies the basic ideas
for translating the calculus to Haskell and Section 4 gives a detailed overview of
the translation. Section 5 contains excerpts from our type-safe implementation
of an SMTP client. Section 6 briefly discusses related work on domain modeling
with types and Section 7 concludes. Due to lack of space, we have to assume
that the reader is reasonably fluent in Haskell [13].

2 Calculus with Session Types

Figure 1 presents the syntax of a calculus with session types. For simplicity, the
calculus only considers one end of one communication channel. The restriction
to one end avoids the necessity and semantic complication of adopting an ex-
pression for concurrent execution in the syntax. It is adequate for the present
purpose because the interest is in type checking the code for one peer (client
or server), not it checking the consistency of a whole system of processes. The
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Γ , ∅ ` Halt

Γ , γ ` d ⇒ Γ ′ , γ′ Γ ′ , γ′ ` e
Γ , γ ` Let d in e

Γ (x) : b Γ , γ ` e1 Γ , γ ` e2
Γ , γ ` If x then e1 else e2

Γ (x) = τ̃ , γ → 0 Γ (z̃) = τ̃
Γ , γ ` x z̃

γ = [li(bi) : γi]
n
i=1 Γ (xi : bi) , γi ` ei

Γ , γ ` Receive [li(xi) → ei]

Fig. 2. Typing rules for expressions

restriction to one communication channel transforms session types to communi-
cation effects [1], makes a linear treatment of the channel enforcable by syntactic
means, and simplifies the translation in Section 4.

The calculus deals with three kinds of data, first-order base type values,
functions, and labels. Labels have a status similar to labels in record and variant
types, they occur in channel types and they can be sent and received via channels:
each message is a base value tagged with a label.

The expressions of the calculus come in a sequentialized style reminiscent of
continuation-passing style. More precisely, an expression e is a sequence of (let-)
definitions which ends in either a Halt instruction, a conditional, a function call,
or a receive instruction that branches on the received label. All arguments are
restricted to variables. The notation x̃ stands for the sequence x1, . . . , xn where
n derives from the context.

A definition d is either the application of a primitive operation, the definition
of a recursive function, the send operation, and the close operation for closing
the communication channel.

A type is either a base type or a function type. Due to the sequential style,
functions do not return values. Instead they must take a continuation argument.
The function type also includes an effect specification. It defines the latent com-
munication that will take place when the function is applied [1].

A session type is either empty (the channel is closed), the empty word (the
channel is depleted but not yet closed), a label-tagged alternative of different
session types (the value may be sent l(b) or received l(b)), or a type variable
which is used in constructing a recursive type with the µ operator. The µ operator
constructs a fixpoint, e.g., µβ.γ ≈ γ[β 7→ µβ.γ]. All uses of µ are expansive, that
is, there can be no subterms of the form µβ1 . . . µβn.β1.

The type system relies on two judgments, Γ , γ ` e, to check the consistency
of an expression and prescribe its communication effect γ, and Γ ,γ ` d ⇒ Γ ′ , γ′

to model the effect of a definition and its transformation of the environment.
Figure 2 contains the rules for expressions. Halt requires that the channel

is closed. The let expression types the body after transforming the environment
according to the definition. The conditional passes the environment unchanged
to both branches. Applying a function requires that the function consumes the
remaining effect. Receiving a tagged value eliminates a labeled alternative in the
session type. The branches are typed with the remaining session type.

Figure 3 contains the typing rules for definitions. A primitive operation has
base type arguments and result. It does not depend on the session type. Func-
tion formation is independent of the current session type, too. The body of the
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Γ (xi) = b
Γ , γ ` x = Op(x1, . . . , xn) ⇒ Γ (x : b) , γ

Γ (f : τ̃ , γ → 0)(x̃ : τ̃) , γ ` e
Γ , γ′ ` rec f(x̃) = e ⇒ Γ (f : τ̃ , γ → 0) , γ′

Γ (xj) = bj γ = [li(bi) : γi]
n
i=1

Γ , γ ` Send lj(xj) ⇒ Γ , γj
1 ≤ j ≤ n Γ , ε ` Close () ⇒ Γ , ∅

Fig. 3. Typing rules for definitions

function must be checked with the session type prescribed by the call site of the
function. Sending of a labeled value selects a part of the session type for the rest
of the expression. Closing the communication channel requires that there are no
exchanges left. The rule sets the remaining exchanges to the empty set.

The present paper does not define a semantics for the language. Suitable
semantics (for extended languages) may be found in work of Gay et al [11].

3 Basic Framework

The mapping from the calculus with session types to Haskell rests on a few over-
loaded functions. Each message has its own specific type and it comes with func-
tions to parse and unparse a message, as specific with the type class Command1.

class Command command where

parseCommand :: ReadS command

unparseCommand :: command -> ShowS

The underlying datatype is a function that maps the session type, a string,
and a file handle to an IO action. The string contains the input and output is
generated via the handle in the IO monad. Hence, the datatype is the composition
of three reader monads and the IO monad.2

data Session st a = Session { unSession :: st -> String -> Handle -> IO a }

The attentive reader may wonder if this design of the session monad is the
only possible. Consider the following two alternatives:

– Suppose that output is generated via some writer monad. Since the IO monad
is still required because of IO actions that must be performed between the
communication actions, the resulting type would look like IO (a, Output).
Unfortunately, a value in the IO monad does not return anything before
all actions specified by the value have been completed [27]. That is, any
output generated through the Output component in the middle of a trans-
action would only appear at the very end of that transaction. Too late for
an interactive response!

– Suppose that input is obtained directly via the IO monad, for example,
by having the parsers call getChar :: IO Char directly. Unfortunately, as

1 ReadS and ShowS are predefined Haskell types for parsing and unparsing data.
2 The obvious definitions to make Session st into a monad are omitted.
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we will see, the parsers must be able to proceed speculatively and hence
unget characters. While this option seems viable, it would have required
the construction of an imperative parsing library based on getChar and
unGetChar. We have not pursued this further due to lack of time.

The send operation takes the message to send (identified by its type) and a
continuation to construct an action for the current session type. Executing send
first sends the message, advances the session type as indicated by the typing
rule, and then invokes the continuation on the new session type. The declaration
of the operation (a type class) makes clear that the new type depends on the
old type and the message by using a functional dependency.

class SEND st message nextst | st message -> nextst where

send :: message -> Session nextst () -> Session st ()

The receive operation takes a message continuation. It attempts to parse the
message from the input, advances the session type, and invokes the continuation
on the message and the new session type.

receive :: (RECEIVE st cont) => cont -> Session st ()

receive g = Session (\ st inp h -> case receive’ g st inp h of

Just action -> action

Nothing -> fail "unparsable")

When receive is applied directly to a message, cont has the form message ->
Session nextst () but this is not always the case: an alternative of different
messages is also possible in which case the type is an alternative of the different
continuations. An auxiliary function attempts to parse the expected message
and returns either the continuation or nothing.

class RECEIVE st cont | st -> cont where

receive’ :: cont -> st -> String -> Handle -> (Maybe (IO ()))

The io operation serves to embed IO operations between the send and
receive operations.

io :: IO a -> Session st a

io action = Session (\_ _ _ -> action)

Finally, the operation close closes the communication channel. It is only
applicable if the session type is EPS (the translation of ε).

close :: Session NULL () -> Session EPS ()

close cont = Session (\_ _ _ -> unSession cont NULL [])

4 Translation

To make the information in a session type available to the Haskell type checker,
all parts must be translated accordingly. Each labeled message is lifted to a
separate type where the base types correspond to Haskell base types. Each con-
structor of a session type is mapped to a type constructor:
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J∅K = NULL J[`(b) : γ]K = J`(b) : γK Jl(x) : γK = recv Jl(x)K JγK
JεK = EPS J[g1, g2]K = ALT J[g1]K J[g2]K Jl(x) : γK = send Jl(x)K JγK
T JβKβ̃ = β T Jµβ.γKβ̃ = REC (G send recv β̃)

where data G send recv β̃ β = G(T JγKβ̃β)
and send, recv :: * -> * -> *

VJβK = β VJµβ.γK = let β = REC (G (VJγK)) in β

Fig. 4. Translation of Types and Values

data NULL = NULL -- the closed session

data EPS = EPS -- the empty session

data SEND_MSG m r = SEND_MSG m r -- send message m, then session r

data RECV_MSG m r = RECV_MSG m r -- receive message m, then session r

data ALT l r = ALT l r -- alternative session: either l or r

4.1 Translation of Session Types

The translation concerns types and values. It does not directly refer to SEND MSG
and RECV MSG, instead it is parameterized over the send and receive operations,
send and recv. This parameterization enables flipping the session type. Flipping
is required to switch the point of view from one end of the channel to the other.
In a session type it corresponds to exchanging all occurrences of l and l.

Hence, all types are parameterized over send and recv of kind * -> * ->
* and all values are parameterized by polymorphic functions send and recv of
type forall x y . send x y and forall x y . recv x y, respectively.

Figure 4 contains the definition of the translation. The V function defines the
special cases for the value translation, T the cases for the type translation. The
main difficulty is the treatment of the recursion operator. There are two problems
due to restrictions on Haskell’s type system. First, each use of recursion requires
an explicit datatype definition. Fortunately, there is a generic encoding using a
datatype that subsumes many recursively defined datatypes [19]:

data REC f = REC (f (REC f))

In this datatype, f is a constructor function of kind * -> *. Technically, REC
constructs the fixpoint of this function f, up to lifting.

Second, instantiation of f is restricted to type constructor terms to keep the
type system decidable. The ideal translation would be

T Jµβ.γK = REC(λβ.T JγK)
T JβK = β

where λβ . . . is a lambda expression at the type level. However, such lambda ex-
pressions are not admissible in Haskell types and (λβ.T JγK) cannot always be η-
reduced to a pure constructor term: as an example consider that µβ.[l1 : β, l2 : ε]
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would translate to REC(λβ.ALT(send Jl1K β)(send Jl2K EPS)). Hence, the transla-
tion of types needs to introduce a new parameterized datatype for each occur-
rence of µβ.γ in a session type. Furthermore, since datatype definitions cannot
be nested, the translation needs to keep track of the pending type variables (cor-
responding to occurrences of µβ’s in the context) and parameterize the new type
over all these variables.

The corresponding part of the translation on the value level requires the in-
troduction of a recursive definition, too. Technically, the two translations should
be merged to fix the association of each µβ.γ to its corresponding datatype G.
We keep them separate for readability.

For the remaining cases, VJK and T JK are equal to JK. In the type translation,
the parameters β̃ are always passed unchanged to the recursive calls.

Lemma 1. Let Γ contain the types for the data constructors listed above and γ
be a closed, expansive session type.

Γ `haskell VJγK : T JγK

The variables send and receive are provided as polymorphic parameters:

\ (send :: (forall x y . x -> y -> send x y))

(recv :: (forall x y . x -> y -> recv x y)) -> VJγK

Similarly, the type translation refers to type variables send and recv so that the
full type of the value produced by the translation is

forall send recv.

(forall x y . x -> y -> send x y) ->

(forall x y . x -> y -> recv x y) -> T JγK

Additionally, the translation might restrict the instantiation of send and recv
so that the supplied operations are always opposites. A further two-parameter
type class would be required to specify this relation.

4.2 Connecting Session Types with Messages

The specification of the connection between the message to send or receive and
the actual session type requires three ingredients. First, atomic messages must
be matched with their specification. Second, when the specification prescribes an
alternative (with the ALT operator), the matching must be properly dispatched
to the alternatives. Third, recursion must be unwound whenever matching en-
counters the REC operator. The first part is straightforward, the second and third
require careful consideration.

Atomic Messages If the session type prescribes that an atomic message of type
m be send, then the actual message type must be m and the type of the remaining
session is the stripped session type. Similarly, if the session type prescribes that
a message of type m be received then there must be a continuation that expects
a message of that type and continues in the stripped session state.
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instance Command m => SEND (SEND_MSG m b) m b where

send mess cont =

Session (\ st inp h -> do hPutStr h (unparseCommand mess "")

unSession cont (send_next st) inp h)

instance Command m => RECEIVE (RECV_MSG m x) (m -> Session x ()) where

receive’ g st inp h =

case parseCommand inp of

((e, inp’):_) -> Just (unSession (g e) (recv_next st) inp’ h)

[] -> Nothing

The functions send next and recv next are just projections on the last argu-
ment of SEND MSG and RECV MSG:

send_next (SEND_MSG m s) = s

recv_next (RECV_MSG m s) = s

Alternatives When the current operation is a receive operation and the pro-
tocol prescribes an alternative of different messages, then the implementation
attempts to parse the input according to the alternatives and selects the first
successful parse. This trial is encoded in the receive’ function (and is the main
reason for keeping receive and receive’ separate). It also serves as an example
where the first argument of the receive operator is not a function.

instance (RECEIVE spec1 m1, RECEIVE spec2 m2) =>

RECEIVE (ALT spec1 spec2) (ALT m1 m2) where

receive’ (ALT g1 g2) (ALT spec1 spec2) inp =

case receive’ g1 spec1 inp of

Just action -> Just action

Nothing -> receive’ g2 spec2 inp

When the current operation is a send operation and the protocol prescribes an
alternative, then the automatic matching of the protocol specification against the
message type would be fairly complicated [22]. For that reason, the alternatives
must be explicitly selected prior to a send operation. Two primitive selector
functions are provided for that task3:

left :: Session l x -> Session (ALT l r) x

right :: Session r x -> Session (ALT l r) x

left (Session g) = Session (\(ALT l r) inp -> g l inp)

right (Session g) = Session (\(ALT l r) inp -> g r inp)

This design has another positive effect: subtyping of the session type for send
operations! If a protocol states that a certain message must be received, then
the implementor must make sure that the message is understood. Hence, the
matching for the RECEIVE class must be complete. From the sender’s perspective,
a protocol often states that a selection of messages may be sent at a certain point.
So the sender’s implementation may choose to omit some of the alternatives. The
above arrangement makes this possible: a sender may choose just to send the
left alternative and leave the other unspecified.
3 They also require a type class for unwinding recursion.
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JHaltK = return ()

JIf x then e1 else e2K = if x then Je1K else Je2K
Jx z̃K = x z̃
JReceive [g]K = receive JgK
Jg, gK = (ALT (JgK) (JgK))
Jl(x) → eK = (λl(x) → e)
JLet x = Op(x1, . . . , xn) in eK = io(Op(x1, . . . , xn)) >>= (λx → JeK)
JLet rec f(x̃) = e in e′K = let f(x̃) = JeK in Je′K
JLet Send lγ(x) in e′K = Jγ ↓ lK(send (JlK x) Je′K)
JLet Close () in e′K = close (Je′K)
Jl(x) → γ′ ↓ lK = id

Jη1, η2 ↓ lK = left ◦ Jη1 ↓ lK ∪ right ◦ Jη2 ↓ lK

Fig. 5. Translation of Expressions

Recursion Matching against the recursion operator requires unwinding. Its im-
plementation requires two steps. Due to the definition of REC, unwinding boils
down to selecting the argument of REC. The second step derives from the obser-
vation that the body of each REC constructor has type G β̃, which was introduced
by the translation. Now, G β̃ needs to be expanded to its definition so that match-
ing can proceed. To achieve this expansion uniformly requires (yet) another type
class, say, RECBODY:

class RECBODY t c | t -> c where recbody :: t -> c

with instances provided for each of the G β̃. If the definition is

data G send recv β̃ = G(T JγKβ̃)

then recbody is the selector function of type G send recv β̃ → T JγKβ̃:

instance RECBODY (G send recv β̃) T JγKβ̃ where

recbody (G x) = x

Hence, unwinding boils down to two selection operations. In this case, there is
no conceptual difference between the send and receive operations.

instance (RECEIVE t c, RECBODY (f (REC f)) t) => RECEIVE (REC f) c where

receive’ g = Session (\ (REC fRECf) inp ->

unSession (receive’ g) (recbody fRECf) inp)

instance (SEND t x y, RECBODY (f (REC f)) t) => SEND (REC f) x y where

send mess cont = Session (\ (REC fRECf) inp ->

unSession (send mess cont) (recbody fRECf) inp)

4.3 Translation of Expressions

The translation of expressions is given by the table in Figure 5. It assumes
that primitive operations (may) have side effects. When sending a message, the
translation requires information about the current session type. This informa-
tion is needed to inject the send operation into the corresponding “slot” in the
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translated session type. The formulation of this injection (the last two lines) is
nondeterministic: it has to search for the matching label in the tree of alterna-
tives. However, the result is deterministic because each sending label appears
exactly once in the session type. It can be shown that a typed expression in the
session calculus is mapped to a typed Haskell program.

Lemma 2. Suppose that ∅ , γ ` e. Then Γ `haskell JeK : Session (T JγK) (),
where Γ is as in Lemma 1.

5 Case Study: A simple SMTP client

An excerpt of a real world application, our type-safe implementation of the
Simple Mail Transfer Protocol (SMTP) [30], demonstrates the practicability of
our Haskell encoding of session types. Our implementation expects an email as
input and tries to deliver it to a specific SMTP server. It is automatically derived
from the protocol specification in terms of a session type.

5.1 A simplified SMTP session type

A session type corresponding to full SMTP is quite unreadable. Hence, we only
consider a fragment of SMTP relevant to our application. The type is given from
the client’s point of view, flipping all decorations results in the server’s type.

γC = [ 220 : µβ0.[ EHLO : [ 250 : µβ1.[ MAIL : [ 250 : [ RCPT : µβ2.[ 250 : [ DATA : [ 3yz : (LINES, [ 250 : β1,
. . .]),

. . .],
RCPT : β2,
. . .],

. . .],
. . .],

. . .],
QUIT : ∅,
. . .],

5yz : β0],
. . .],

. . .]

After receiving a greeting from the SMTP server (a 222 reply), the client initiates
a mail session sending EHLO to perform several, consecutive email transactions
with the server. A mail transactions starts with a MAIL command, followed by at
least one RCPT command telling the server the recipients of the mail, by a DATA
command announcing the mail content, and by the actual content (LINES). The
client terminates the session issuing a QUIT command. The server usually ac-
knowledges successful commands by sending a 250 reply. In the full protocol,
different kinds of error replies can return after client commands, the server un-
derstands several administrative commands anytime during a session, and the
client may always quit the session.

5.2 Haskell encoding of the SMTP session type

To implement the session specification in Haskell, we first translate the SMTP
commands and replies to Haskell data types.
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-- SMTP commands

data EHLO = EHLO Domain

instance Command EHLO where ...

cEHLO = EHLO undefined -- for the protocol specification

-- SMTP replies

data Reply220 = Reply220 Domain [String]

instance Command Reply220 where ...

r220 = Reply220 undefined undefined -- for the protocol specification

The above declarations show the encoding of the first two messages occurring
during an SMTP session, the 220 reply holding the Internet domain and addi-
tional information about the mail server, and the EHLO command, holding the In-
ternet domain of the client. The Domain datatype represents either IP addresses
or domain names. To make commands and replies amenable both to parsing and
to printing, we make them instances of the Command type class introduced in
Section 3. The remaining SMTP commands are implemented analogously.

The translation of the previously specified SMTP session type arises from
applying the translation specified in Section 4.

smtpSpec
(send:: (forall x y . x -> y -> s x y))
(recv:: (forall x y . x -> y -> r x y)) =
recv p220

(let a0 = REC (Ga0
(send cEHLO
(ALT
(recv p250
(let a1 = REC (Ga1

(ALT
(send cMAIL
(recv p250
(send cRCPT
(let a2 = REC (Ga2

(recv p250
(ALT
(send cDATA
(recv p354
(send cMESG
(recv p250 a1))))

(send cRCPT a2))))
in a2))))

(send cQUIT NULL)))
in a1))

(recv p5yz a0))))
in a0)

For each occurrence of a µβ.γ in the session type, the translation introduces
additional parameterized datatypes as explained in Section 4. Here, we only show
the datatype declaration corresponding to β0 and its instance declaration of the
RECBODY type class.

data Ga0 send recv a0 =

Ga0 (send EHLO

(ALT (recv Reply2 (REC (Ga1 send recv a0))) (recv Reply5 a0)))
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instance RECBODY

(Ga0 send recv a0)

(send EHLO (ALT (recv Reply2 (REC (Ga1 send recv a0))) (recv Reply5 a0)))

where

recbody (Ga0 x) = x

5.3 The SMTP client

With the specification of SMTP sessions in place, we now encode the main
function of an email client, sendMessage. The functions adhere to our SMTP
session specification which is statically guaranteed by the Haskell type system.

sendMessage :: Client -> Server ->

ReversePath -> [ForwardPath] -> [String] -> IO ()

sendMessage client server sender rcpts message =

withSocketsDo $ do

h <- connectTo (showDomain (name server)) (Service "smtp")

str <- hGetContents h

let recv220 = receive (\ (Reply220 server_domain text_220) -> sendEHLO)

sendEHLO = send (EHLO (cname client)) recvEHLO

recvEHLO = receive (ALT (\ (Reply2 y z text_250) -> sendMail)

(\ (Reply5 y z text_5yz) -> sendEHLO))

sendMail = left (send (MAIL sender []) (recv250 (sendRCPT rcpts)))

recv250 cont = receive (\ (Reply2 y z text_250) -> cont)

sendRCPT (rcpt:rcpts) = send (RCPT rcpt []) (recvRCPT rcpts)

recvRCPT rcpts = recv250 (sendRCPT’ rcpts)

sendRCPT’ [] = left sendDATA

sendRCPT’ (rcpt:rcpts) = right (send (RCPT rcpt []) (recvRCPT rcpts))

sendDATA = send DATA recv354

recv354 = receive (\ (Reply3 y z text_354) -> sendMESG)

sendMESG = send (LINES message) (recv250 sendQUIT)

sendQUIT = right (send QUIT finish)

runSession h recv220 (smtpSpec SEND_MSG RECV_MSG) str

hClose h

The sendMessagefunction takes five arguments: client and server arguments
hold information about the parties involved, sender and rcpts encode the email
addresses of the sender and the recipients of the message, and message holds
the message body itself.

After opening a socket connection to the SMTP server and after getting a
handle to the socket to read from it lazily using hGetContents, we first specify
the different interaction steps of the client-server communication using send and
receive. The first step, recv220, receives the greeting message and transfers the
control to the next step, sendEHLO. The sendEHLO step simply sends out the ini-
tial command introducing the client to the server. Its continuation, recvHELLO,
shows how to handle a choice of two possibly incoming messages: instead of a
function, we apply an ALT value holding two alternative handlers branching to
two different continuations to receive. The functions recvRCPT and sendRCPT’
are recursive functions handling the transmission of a list of recipients. They
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show how to send a message of two possible alternatives. To continue with the
first alternative, we wrap left around the continuation sendDATA, otherwise, we
apply right to the second alternative continuation. Close in the continuation
to the QUIT command terminates the session.

The function runSession starts the client/server interaction taking recv220
as entry point, smtpSpec as SMTP specification, and the socket both as input
stream and output stream.

6 Related Work

The introduction already mentioned some related work on concurrency and ses-
sion types. A particular system close to session types is Armstrong’s UBF [2].
Also relevant to the present work are other applications of domain modeling
using type systems.

There are a number of applications, ranging from general techniques to mod-
eling DTD’s [22, 18]. Also work on modeling type-safe casting [34], the encoding
of type equality predicates [7, 3], and the representation of type-indexed values
[35] is relevant.

A foundational work by Rhiger [31] considers typed encodings of the simply
typed lambda calculus in Haskell and clarifies the necessary prerequisites for
such an encoding to be sound and complete. An example encoding is developed
by Danvy and others [8]. Later work by Chen and Xi [6] extends their approach
to a meta-programming setting.

Another application area is modeling external concepts like relational schemes
in databases for obtaining a type-safe query language [17], wrapping accesses to
COM components [26], and integrating access to Java library [4].

None of the listed works specifies an encoding of recursion as we do in our
translation neither do they exploit polymorphism as in our guarantee that client
and server specifications match up.

7 Conclusion

A calculus with session types can be embedded into the programming language
Haskell in a type-safe way. We give a detailed account of the translation and prove
its type safety. Our case study demonstrates that the embedding is practical
and exhibits the benefits of declarative programming. The resulting program is
straightforward to read and understand.

It would be interesting to further investigate alternative designs for the
Session monad. In particular, pushing the idea character-based parsing to the
extreme appears to lead to a pure implementation on the basis of stream trans-
formers. This implementation would completely decouple the processing of the
protocol from the underlying IO actions.
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