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Abstract— The purpose of our research is to develop a hu-
manoid museum guide robot that performs intuitive, multimodal
interaction with multiple persons. In this paper, we present a
robotic system that makes use of visual perception, sound source
localization, and speech recognition to detect, track, and involve
multiple persons into interaction. Depending on the audio-visual
input, our robot shifts its attention between different persons.
In order to direct the attention of its communication partners
towards exhibits, our robot performs gestures with its eyes and
arms. As we demonstrate in practical experiments, our robot is
able to interact with multiple persons in a multimodal way and
to shift its attention between different people. Furthermore, we
discuss experiences made during a two-day public demonstration
of our robot.

I. INTRODUCTION

Our goal is to develop a museum guide robot that acts
human-like. The robot should perform intuitive, multimodal
interaction, i.e., it should use speech, eye-gaze, and gestures
to converse with the visitors. Furthermore, the robot should be
able to distinguish between different persons and to interact
with multiple persons simultaneously. Compared to previous
museum tour-guide projects [17], [24], [28], which mainly
focused on the autonomy of the (non-humanoid) robots and
did not emphasize the interaction part so much, we want to
build a robot that behaves human-like during the interaction.

Much research has already been conducted in the area of
non-verbal communication between a robot and a human, such
as facial expression, eye-gaze, and gesture commands [4], [9],
[20], [25], [29]. However, only little research has been done in
the area of developing a robotic system that is able to interact
with multiple persons appropriately. This was also stated by
Thrun [27] as one of the open questions in the field of human-
robot interaction.

In contrast to previous approaches to human-robot interac-
tion using multimodal sensing [8], [12], [19], our goal is that
the robot involves multiple persons into interaction and does
not focus its attention on only one single person. It should
neither simply look to the person who is currently speaking.
Depending on the input of the audio-visual sensors, our robot
shifts its attention between different people.

In order to direct the attention of the visitors towards the
exhibits, our robot performs gestures with its eyes and arms. To
make the interaction even more human-like, we use a head with
an animated mouth and eyebrows and show facial expressions

Fig. 1. Our robot Alpha interacting with people during a public demonstra-
tion.

corresponding to the robot’s mood. As a result, the users get
feedback how the robot is affected by the different external
events. This is important because expressing emotions helps
to indicate the robot’s state or its intention. Figure 1 shows
our robot Alpha interacting with people during a two-day
demonstration in public.

This paper is organized as follows. The next section gives
an overview over related work, and Section III introduces
the hardware of our robot. In Section IV, we present our
technique to detect and keep track of people using vision data
and a speaker localization system. In Section V, we explain
our strategy on how to determine the gaze direction of the
robot and how to decide which person gets its attention. In
Section VI, we describe the pointing gestures our robot per-
forms, and in Section VII, we illustrate how the robot changes
its facial expression depending on external events. Finally, in
Section VIII, we show experimental results and discuss the
experiences we made during the two-day demonstration of our
robot in public.

II. RELATED WORK

Over the last few years, much research has been carried out
in the area of multimodal interaction. Several systems exist
that use different types of perception to sense and track people
during an interaction and that use a strategy to decide which
person gets the attention of the robot.

Lang et al. [8] apply an attention system in which only
the person that is currently speaking is the person of interest.
While the robot is focusing on this person, it does not look to
another person to involve it into the conversation. Only if the
speaking person stops talking for more than two seconds, the



robot will show attention to another person. Okuno et al. [19]
also follow the strategy to focus the attention on the person
who is speaking. They apply two different modes. In the first
mode, the robot always turns to a new speaker, and in the
second mode, the robot keeps its attention exclusively on
one conversational partner. The system developed by Mat-
susaka et al. [12] is able to determine the one who is being
addressed to in the conversation. Compared to our application
scenario (museum guide), in which the robot is assumed to
be the main speaker or actively involved in a conversation,
in their scenario the robot acts as an observer. It looks at the
person who is speaking and decides when to contribute to a
conversation between two people.

The model developed by Thorisson [26] focuses on turn-
taking in one-to-one conversations. This model has been
applied to a virtual character. Since we focus on how to decide
which person in the surroundings of the robot gets its focus of
attention, a combination of both techniques is possible. Kopp
and Wachsmuth [6] developed a virtual conversational agent
which uses coordinated speech and gestures to interact with
humans in a multimodal way.

In the following, we summarize the approaches to human-
like interaction behavior of previous museum tour-guide
projects. Bischoff and Graefe [3] presented a robotic system
with a humanoid torso that is able to interact with people
using its arms. This robot also acted as a museum tour-guide.
However, the robot does not distinguish between different
persons and does not have an animated face. Several (non-
humanoid) museum tour-guide robots that make use of facial
expressions to show emotions have already been developed.
Schulte et al. [22] used four basic moods for a museum
tour-guide robot to show the robot’s emotional state during
traveling. They defined a simple finite state machine to switch
between the different moods, depending on how long people
were blocking the robot’s way. Their aim was to enhance the
robot’s believability during navigation in order to achieve the
intended goals. Similarly, Nourbakhsh et al. [16] designed a
fuzzy state machine with five moods for a robotic tour-guide.
Transitions in this state machine occur depending on external
events, like people standing in the robot’s way. Their intention
was to achieve a better interaction between the users and the
robot. Mayor et al. [13] used a face with two eyes, eyelids and
eyebrows (but no mouth) to express the robot’s mood using
seven basic expressions. The robot’s internal state is affected
by several events during a tour (e.g., a blocked path or no
interest in the robot).

Most of the existing approaches do not allow continuous
changes in the facial expression. Our approach, in contrast,
uses a bilinear interpolation technique in a two-dimensional
state space [21] to smoothly change the robot’s facial expres-
sion.

III. THE DESIGN OF OUR ROBOT

The body (without the head) of our robot Alpha has cur-
rently 17 degrees of freedom (four in each leg, three in each
arm, and three in the trunk; see left image of Figure 2). The

Fig. 2. The left image shows the body of our robot Alpha. The image on
the right depicts the head of Alpha in a happy mood.

joints of the robot are driven by Faulhaber DC-motors of
different sizes. The robot’s total height is about 155cm. The
skeleton of the robot is constructed from carbon composite
materials to achieve a low weight of about 30kg . The head (see
right image of Figure 2) consists of 16 degrees of freedom,
which are driven by servo motors. Three of these servos move
two cameras and allow a combined movement in the vertical
and an independent movement in the horizontal direction.
Furthermore, three servos constitute the neck joint and move
the entire head, six servos animate the mouth, and four the
eyebrows. Using such a design, we can control the neck and
the cameras to perform rapid saccades, which are quick jumps,
or slow, smooth pursuit movements (to keep eye-contact with
a user). We take into account the estimated distance to a target
in order to compute eye vergence movements. These vergence
movements ensure that the target remains in the center of the
focus of both cameras. Thus, if a target comes closer, the eyes
are turned toward each other (see also [4]).

The cameras are one of the main sensors to obtain infor-
mation about the surroundings of the robot. Furthermore, we
use the stereo signal of two microphones to perform speech
recognition as well as sound source localization.

For the behavior control of our robot, we use a framework
developed by Behnke and Rojas [1] that supports a hierarchy of
reactive behaviors. In this framework, behaviors are arranged
in layers that work on different time scales.

IV. KEEPING TRACK OF PEOPLE

To sense people in the environment of our robot, we use
the data delivered by the two cameras and the information
of our speaker localization system. In order to keep track of
persons even when they are temporarily outside the robot’s
field of view, the robot maintains a probabilistic belief about
the people in its surroundings.

A. Visual Detection and Tracking of People

Figure 3 illustrates how the update of the robot’s belief
works. To find people in the current pair of images, we first
run a face detector. Then, we apply a mechanism to associate
the detections to faces already stored in the belief and finally,
we update the belief according to the new observations. In the
following, we explain the individual steps in more detail.

Our face detection system is based on the AdaBoost algo-
rithm and uses a boosted cascade of Haar-like features [10].
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Fig. 3. The three steps carried out to update the belief of the robot about
the people in its surroundings based on vision data.

Each feature is computed by the sum of all pixels in rectangular
regions, which can be computed very efficiently using integral
images. The idea is to detect the relative darkness between
different regions like the region of the eyes and the cheeks.
Originally, this idea was developed by Viola and Jones [30]
to reliably detect faces without requiring a skin color model.
This method works quickly and yields high detection rates.

After the face detection process, we must determine which
detected face in the current images belongs to which person
that already exist in the belief and which face belongs to a
new face. To solve this data association problem, we apply
the Hungarian Method [7]. The Hungarian Method is a gen-
eral method to determine the optimal assignment of jobs to
machines, using a given cost function in the context of job-
shop scheduling problems. Since we currently do not have a
mechanism to identify people, we use a distance-based cost
function to determine the mapping from current observations
to faces already existing in the belief.

To deal with false classifications of face/non-face regions
and association failures, we apply a probabilistic technique.
We use a recursive Bayesian update scheme [14] to compute
the existence probability of a face (details can be found in [2]).
In this way, the robot can also keep track of the probability
that a person outside the current field of view is still there.

Figure 4 shows three snapshots during face tracking. As
indicated by the differently colored boxes, all faces are tracked
correctly.

B. Speaker Localization

Additionally, we implemented a system to localize a speaker
in the environment. We apply the Cross-Power Spectrum Phase
Analysis [5] to calculate the spectral correlation measure
between the left and the right microphone channel. By doing
so, we can determine the delay between the left and the right
channel. As we can use this delay, the relative angle between
a speaker and the microphones can be calculated under two
assumptions [8]: 1. The speaker and the microphones are at
the same height, and 2. the distance of the speaker to the mi-
crophones is larger than the distance between the microphones
themselves.

We assign the information that the person has spoken to the
person in the robot’s belief that has the minimum distance to
the sound source. If the angular distance between the speaker

Fig. 4. Tracking three faces.

and the person is greater than a certain threshold, we assume
the speaker to be a new person, who just entered the scene.

V. GAZE CONTROL AND FOCUS OF ATTENTION

For each person in the belief, we compute an importance
value. This importance value triggers the focus of attention of
the robot. It currently depends on the time when the person
has last spoken, on the distance of the person to the robot
(estimated using the size of the bounding box of its face),
and on its position relative to the front of the robot. People
who have recently spoken get a higher importance than others.
The same applies to people who stand directly in front of the
robot and to people who are close to the robot. The resulting
importance value is a weighted sum of these three factors.

The robot focuses its attention always on the person who
has the highest importance, which means that it keeps eye-
contact with this person. If at some point in time another
person is considered to be more important than the previously
most important one, the robot shifts its attention to the other
person. For example, this can be the case when a person steps
closer to the robot or when a person starts speaking. Note
that one can also consider further information to determine
the importance of a person. If our robot, for example, could
detect that a person is waving with his/her hands to get the
robot’s attention, this could easily be integrated as well.

If a person that is outside the current field of view and not
stored in the belief so far starts to speak, the robot reacts to
this by turning towards the corresponding direction. In this
way, the robot shows attentiveness and is able to update its
belief.

Since the field of view of the robot is constrained (it is
approximately 90 degrees), it is important that the cameras
move from time in order to time to explore the environment
so that the robot is able to update its belief about surrounding
people. Thus, the robot regularly changes its gaze direction
and looks in the direction of other faces, not only to the most
important one. Our idea is that the robot shows interest in
multiple persons in its vicinity so that they feel involved into
the conversation. Like humans, our robot does not stare at one
conversational partner all the time.

VI. POINTING GESTURES

As already investigated by Sidner et al. [23] who used
a robotic penguin, humans tend to be more engaged in an
interaction when a robot uses gestures to refer to objects of
interest. The attention of the communication partners is drawn
towards the objects the robot is pointing to. Thus, we let the
robot perform pointing gestures to an exhibit when it starts
to present one. In this way, the visitors are attracted more,



Fig. 5. Side view of the arm movement during a pointing gesture.

follow the gaze direction of the robot, and are able to easily
infer which of the exhibits (if there are several nearby) is the
one of interest.

While analyzing arm gestures performed by humans,
Nickel et al. [15] found out that most people use the line
of sight between head and hand when pointing to an object.
Compared to this line of sight, the direction of the forearm
was not so expressive. People usually move the arm in such
a way that in the hold phase, the hand is in one line with the
head and the object of interest. We use this result to compute
the position of the hand of our robot during the hold phase.

Our robot has arms with three degrees of freedom: two in the
shoulder and one in the elbow. To specify an arm movement,
we use the x (left and right) and y (back and forth) direction of
the shoulder joint and an abstract parameter that specifies the
arm extension. The arm extension is a value which specifies the
distance between hand and shoulder relative to the maximum
possible distance when the arm is outstretched. Using this
extension value, the position of the elbow joint is computed.
The x component of the shoulder joint accepts values between
−12◦ and 52◦ and the y component values between −38◦

and 66◦.
When the robot starts to explain an exhibit, it simultaneously

moves the head and the eyes in the direction of the exhibit, and
it points in the direction with the corresponding arm. We first
compute the point where the (almost) outstretched arm would
meet the line of sight. This is the point where the robot’s hand
rests during the hold phase. Figure 5 illustrates the movement
of the arm during a gesture. To model the arm gesture, we
use an individual sine curve for each joint. We optimized the
movement so that it appears human-like.

Figure 6 (from (a) to (d)) shows an example scenario from
the visitor’s perspective. Initially, the robot and the person were
looking at each other while talking. Then, the person asked the
robot to present an exhibit. Thus, the robot started to explain
the exhibit and simultaneously looked in the direction of the
corresponding object. Immediately afterwards, it started the
arm gesture.

VII. FACIAL EXPRESSIONS

Showing emotions plays an important role in inter-human
communication because, for example, the recognition of the
mood of a conversational partner helps to understand his/her
behavior and intention. Thus, to make the interaction more
human-like, we use a face with animated mouth and eyebrows

(a) (b)

(c) (d)

Fig. 6. Alpha performing a pointing gesture (from (a) to (d)). Initially, the
robot faces the person. Then, it looks in the direction of the exhibit and starts
the arm gesture.

to display facial expressions corresponding to the robot’s
mood. As a result, the users get feedback how the robot is
affected by the different external events.

The robot’s facial expression is computed in a two-
dimensional space, using six basic emotional expressions (joy,
surprise, fear, sadness, anger, and disgust). Here, we follow the
notion of the Emotion Disc developed by Ruttkay et al. [21].
The design of the Emotion Disc is based on the observation
that the six basic emotional expressions can be arranged on the
perimeter of a circle (see Figure 7), with the neutral expression
in the center. The Emotion Disc can be used to control the
expression of any facial model once the neutral and the six
basic expressions are designed. Figure 7 shows the six basic
facial expressions of our robot.

The parameters P ′ for the face corresponding to a certain
point P in the two-dimensional space are calculated by linear
interpolation between the parameters E ′i and E′i+1 of the
neighboring basic expressions:

P ′ = l(p) · (α(p) · E′i + (1− α(p)) · E′i+1). (1)

Here, l(p) is the length of the vector p that leads from
the origin (corresponding to the neutral expression) to P ,
and α(p) denotes the normalized angular distance between p
and the vectors corresponding to the two neighboring basic
expressions. This technique allows continuous changes of the
facial expression.

To influence the emotional state of our robot, we use
behaviors that react to certain events. For example, if no one
is interested in the robot, it is getting more and more sad, if
someone then talks to it, the robot’s mood changes to a mixture
of surprise and happiness. Each behavior submits its request
in which direction and with which intensity it wants to change
the robot’s emotional state. After all behaviors submitted their
requests, the resulting vector is computed by the sum of the
individual requests. We allow any movement within the circle
described by the Emotion Disc.

VIII. EXPERIMENTAL RESULTS

To evaluate our approach to control the gaze direction of
the robot and to determine the person who gets the focus
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Fig. 7. The two-dimensional space in which we compute the robot’s facial
expression.

of its attention, we performed several experiments in our
laboratory. One of them is presented here. Furthermore, we
report experiences we made during public demonstration.

A. Shifting Attention

This experiment was designed to show how the robot shifts
its attention from one person to another if it considers the
second one to be more important. In the situation considered
here, two persons were in the surroundings of Alpha. Person 1
was only listening and person 2 was talking to the robot. Thus,
the robot initially focused its attention on person 2 since it had
the highest importance. The images from (a) to (d) in Figure 8
illustrate the setup of this experiment and show how the robot
changes its gaze direction. The lower image in Figure 8 shows
the evolution of the importance value of the two persons. At
time steps 10 and 21, the robot looked to person 1 to signal
awareness and to involve him/her into the conversation. When
looking to person 1 at time step 21, the robot suddenly noticed
that this person had come very close. Accordingly, person 1 got
a higher importance value, and the robot shifted its attention
to this person. As this experiment demonstrates, our robot
does not focus its attention exclusively on the person that is
speaking. Further experimental results are presented in [2]. We
provide videos of our robot Alpha on our webpage1.

B. Presenting Alpha to the Public

During a two-day science fair of Freiburg University in
June 2005, we exhibited our robot. Alpha had simple con-
versations with the people and presented its robotic friends.
Figure 9 shows Alpha in action. For speech recognition, we
currently use a commercial software (GPMSC developed by
Novotech [18]) and for speech synthesis, the Loquendo TTS
software [11], which is also commercial. Our dialogue system
is realized as a finite state machine (see [2] for details).

We asked several people who interacted with the robot to
fill out questionnaires to get feedback. Almost all people found
the eye-gazes, gestures, and the facial expression human-like
and felt that Alpha was aware of them. The people were

1http://www.nimbro.net/media.html

(a)

22

1

t < 10

field of view

(b)

2

1

t = 10

(c)

22

1

11 < t < 21 (d)

2
1

t >= 21

 10  20  30

im
po

rta
nc

e

time step

importance of person 1
importance of person 2

shifting
the attention

gaze to person 1

Fig. 8. The images (a) to (d) illustrate the setup in this experiment. The lower
image shows the evolution of the importance values of two people. During
this experiment, person 2 is talking to the robot. Thus, it has initially a higher
importance than person 1. The robot focuses its attention on person 2 but also
looks to person 1 at time steps 10 and 21 to demonstrate that it is aware of
person 1. At time step 21 the robot notices that person 1 has come very close
and thus it shifts its attention to person 1, which has a higher importance now.

mostly attracted and impressed by the vivid human-like eye
movements. Most of the people interacted with the robot for
more than three minutes. This is a good result because it was
rather crowded around our stand. Some toddlers were afraid
of Alpha and hid behind their parents. Apparently, they were
not sure what an creature the robot is.

One limitation of our current system is that the speech
recognition does not work sufficiently well in extremely noisy
environments. In the exhibition hall, even the humans had to
talk rather loud to understand each other. Thus, the visitors
had to use close-talking microphones in order to talk to the
robot. Obviously, there were several recognition failures.

To evaluate the expressiveness of the gestures, we performed
an experiment in which we asked the people (which were
not familiar with robots) to guess which exhibit Alpha was
pointing to. In this experiment, Alpha randomly pointed to one
of the robots. We had two robots exhibited on each side of a
table and, as can be seen from Figure 9, the robots on the same
side were sitting quite close to each other. 91% of the gestures
were correctly interpreted. Each subject guessed the target of
four pointing gestures. One interesting observation was that the
people automatically looked into the robot’s eyes in order to
determine the object of interest. Thus, they noticed that the arm
was not the only source of directional information. Another
observation was that the people did not verbalize the names of
the referenced robots (they were clearly marked), instead they
adopted a pointing behavior as well. Further experiments in
our laboratory with the aim to evaluate the dereferencability
of pointing gestures yielded similar results.



Fig. 9. Alpha presenting its friends.

IX. CONCLUSIONS

In this paper, we presented an approach to enable a hu-
manoid robot to interact with multiple persons in a multimodal
way. Using visual perception and sound source localization,
the robot applies an intelligent strategy to change its focus
of attention. In this way, it can attract multiple persons and
include them into an interaction. In order to direct the attention
of its communication partners towards objects of interest, our
robot performs pointing gestures with its eyes and arms. To
express the robot’s approval or disapproval to external events,
we use a technique to change its facial expression.

In practical experiments, we demonstrated our technique
to control the robot’s gaze direction and to determine the
person who gets its attention. Furthermore, we discussed the
experiences we made during a public demonstration of our
robot.
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