
Robot Perception for
Indoor Navigation

Felix Endres

Technische Fakultät
Albert-Ludwigs-Universität Freiburg

Dissertation zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

Betreuer: Prof. Dr. Wolfram Burgard

Robot Perception for
Indoor Navigation

Felix Endres

Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften
Technische Fakultät, Albert-Ludwigs-Universität Freiburg

Dekan Prof. Dr. Georg Lausen
Erstgutachter Prof. Dr. Wolfram Burgard

Albert-Ludwigs-Universität Freiburg
Zweitgutachter Prof. Dr. Thomas Brox

Albert-Ludwigs-Universität Freiburg
Tag der Disputation 4. August 2015

Abstract

In recent years, commercially available mobile robots, that operate in indoor environ-
ments, have found their ways into private homes, office environments, and industrial
settings. They fulfill important duties such as transportation, telepresence, and cleaning.
While some tasks, such as vacuum cleaning, can be achieved with rudimentary percep-
tion, for more complex tasks sophisticated perception capabilities are fundamental for
autonomous robots. Even for the mentioned vacuum cleaning, improved perception al-
lows for substantial increases in efficiency. In this thesis, we investigate novel approaches
for the modelling of indoor environments for robot navigation. Being an important foun-
dation for higher level skills, a particular focus lies on simultaneous localization and
mapping (SLAM), which allows a robot to construct a model of its environment dur-
ing operation. In the context of SLAM, we develop an approach for RGB-D cameras,
that captures dense 3D maps for robot navigation. For this SLAM system, we propose
novel methods to increase the accuracy of the trajectory estimation and the robustness
against misassociations during individual motion estimates. Further, we address a major
limitation on the hardware side of RGB-D cameras, namely the limited field of view. We
investigate SLAM with multiple RGB-D cameras and develop an approach for automated
extrinsic calibration of RGB-D cameras via SLAM. We further propose an extension of
RGB-D sensors with mirrors to bisect the field of view into two roughly opposite views.
While this does not increase the overall information perceived, we show that the divided
field of view is beneficial in the context of SLAM. Additionally, we exploit the structural
properties of this catadioptric extension to constrain the mentioned calibration method,
such that planar motion of the robot is sufficient for online calibration of the two views.
To autonomously access all areas in a private home or office, a further key skill for robot
navigation is the operation of doors. In this context, we extend the state of the art by novel
methods for learning a model of the kinematics and dynamics of a door. We demonstrate
that the knowledge about the dynamics of a door allows the robot to accurately predict
the motion of the door from inertia. We use this ability to employ a door opening strategy
with low requirements on the dexterous workspace of the manipulator. To show the bene-
fits of the approaches proposed in this thesis, we thoroughly evaluate them in experiments
with real robots and real sensor data. Overall, the proposed approaches lower the cost of
the sensing equipment and the required complexity of the manipulator. These factors are
particular important for commercial robots targeted at households and small businesses.

Zusammenfassung

Roboter wurden in der Vergangenheit hauptsächlich im Bereich der Automatisierung der
industriellen Fertigung eingesetzt, in Deutschland z.B. in der Automobilindustrie. Sol-
che Roboter sind jedoch nur sehr eingeschränkt autonom – im Normalfall können sie
lediglich sehr begrenzt auf ihre Umgebung reagieren und folgen einer strikten Programm-
routine. Daher ist es notwendig beim Einsatz solcher Roboter die Arbeitsumgebung stark
an diese anzupassen. In der industriellen Fertigung werden daher speziell strukturierte
Bereiche eingerichtet, in denen Roboter am Fließband oder der Fertigungsstraße ein-
deutig vordefinierte Bedingungen vorfinden. So wird zum Beispiel die Position eines
Werkstücks auf dem Förderband so kontrolliert, dass der Erfolg des vorprogrammierten
Bewegungsablaufs garantiert werden kann.

Autonome Roboter hingegen setzen ihre Sensoren ein, um ihre Umgebung wahrzuneh-
men und sich so ein Modell ihrer Umwelt zu verschaffen. Anhand des Modells können
autonome Roboter dann Entscheidungen über ihre Aktionen treffen. Die Forschung an
solchen autonomen, intelligenten Systemen hat in den letzten Jahrzehnten große Fort-
schritte gemacht. Besonders die Weiterentwicklung probabilistischer Verfahren hat den
Erfolg im Umgang mit Sensormessungen und dem zugehörigen Messrauschen vorange-
trieben. Dadurch wurden spannende neue Anwendungen wie z.B. Häfen mit automatisier-
ter Schiffsbe- und entladung ermöglicht. In den letzten Jahren sind auch erste autonome
Roboter für den nicht-industriellen Bereich auf den Markt gekommen, z.B. in Form von
autonomen Staubsaugern und -wischern, Rasenmähern und Telepräsenzrobotern. Insge-
samt ist davon auszugehen, dass Roboter in Zukunft immer mehr Arbeiten übernehmen
können.

Das Ziel dieser Arbeit ist es, die Grundlagen der Autonomie von mobilen Robotern
weiter zu entwickeln. Unser Fokus liegt dabei auf Robotern, die innerhalb von Gebäuden
eingesetzt werden, wie z.B. Haushaltsroboter. Eine wichtiges Fundament für einen mo-
bilen Roboter ist die Möglichkeit in der Umgebung zu navigieren. Dazu muss sich der
Roboter einerseits lokalisieren können, andererseits sollte er seine Umgebung kartieren
können. Wurde der Roboter nicht im Vorfeld mit einer Karte seines Einsatzorts ausge-
stattet – was gerade im Konsumentenbereich kaum möglich ist – muss er gleichzeitig
eine Karte erstellen, während er sich anhand dieser lokalisiert. Im Englischen wird dieses
Problem simultaneous localization and mapping, kurz SLAM, genannt. Die Forschung
des letzten Jahrzehnts hat viele Ansätze zur Lösung des SLAM-Problems hervorgebracht.

viii

Für diese Ansätze wurden meist Laserscanner oder Kameras verwendet, um die Umge-
bung wahrzunehmen. Laserscanner tasten die Umgebung mit einem rotierenden Strahl
ab, so dass z.B. ein horizontaler Schnitt des Gebäudes aus Sicht des Roboters vermessen
wird. Aus einer Serie solcher Messungen kann mittels SLAM-Verfahren eine konsistente
zweidimensionale Karte erstellt werden. Alternative können SLAM-Verfahren auch an-
dere Sensoren wie Kameras verwenden. Bei einzelnen Kameras ist es dabei schwierig
genaue metrische Informationen zu gewinnen, weswegen für SLAM häufig Stereokame-
ras verwendet werden. Mit diesen können metrische Informationen für die Pixel durch
Triangulation berechnet werden. Dazu ist es notwendig die jeweiligen Pixel einander
zuzuordnen, auf die ein Punkt in den beiden Kameras projiziert wird. Dies ist gerade im
Innenbereich oft problematisch, da diese Zuordnung über die Textur des Bildes geschieht.
Auf einfarbigen Wänden, Decken oder auch Böden ist eine eindeutige Zuordnung daher
kaum möglich. Neuartige RGB-D Kameras, die in der Unterhaltungselektronikbranche
entwickelt wurden, umgehen dieses Problem, indem die Triangulation nicht zwischen
zwei Bildern geschieht, sondern zwischen einem aktiv projizierten Infrarotmuster und
dessen Abbildung in einer Infrarotkamera. Zusätzlich wird mit einer regulären Kamera
ein Farbbild aufgenommen. In den aktuellen Modellen funktionieren die Distanzmessun-
gen für den Bereich von ca. 0,6 bis 5 m. Im Nahbereich erreichen die Distanzmessungen
dabei eine Genauigkeit im Bereich weniger Millimeter, allerdings nimmt der Messfehler
bedingt durch die Funktionsweise quadratisch mit der Distanz zu.

Mit diesen Eigenschaften sind RGB-D Kameras besonders zum Erstellen von dreidi-
mensionalen Umgebungsmodellen in Innenräumen geeignet. Wir erarbeiten daher in den
Kapiteln 3 und 4 ein SLAM-System, das sich die Eigenschaften von RGB-D Kameras zu
nutze macht, um ein möglichst genaues Umgebungsmodell für die Navigation mobiler
Roboter zu erstellen. Dazu übertragen wir in Kapitel 3.1 zunächst SLAM-Techniken, die
für Stereokameras oder Laserscanner eingesetzt werden, und evaluieren die resultierenden
Eigenschaften des Systems. In Kapitel 3.2 diskutieren wir dafür geeignete Fehlermaße
und stellen Testdatensätze vor, die verschiedenste Szenarien abdecken. Wir stellen fest,
dass das System unter bestimmten Bedingungen bereits eine hohe Genauigkeit erreicht.
In schwierigen Szenarien, z.B. in großen Räumen oder bei starker Bewegungsunschärfe,
sinkt die Leistung jedoch ab. In Kapitel 3 analysieren wir die Probleme die unter schwieri-
geren Bedingungen auftreten und stellen mehrere Ansätze zur Verbesserung des RGB-D
SLAM-Systems vor. Kapitel 3.3 beschreibt mehrere Techniken, mit denen wir die Su-
che und den Vergleich von visuellen Merkmalen verbessern, um sowohl die Laufzeit zu
reduzieren, als auch die Schätzung der Sensorbewegung zu verbessern. In Kapitel 3.4
benutzen wir den Posengraph, eine Graphstruktur bestehend aus den Sensorposen als
Knoten und den relativen Bewegungsschätzungen zwischen diesen als Kanten, um die
Kandidaten für zukünftige Bewegungsschätzungen zu leiten. Dadurch verbessert sich
die Genauigkeit, wenn der Roboter während dem Kartieren einen Ort zum wiederholten

ix

Mal besucht. Konkret nutzen wir die Graph-Nachbarschaft, um Kandidaten für die Suche
nach Merkmalskorrespondenzen zu bestimmen, da sich bereits erfolgreich berechnete
Bewegungsschätzungen in dieser Nachbarschaft widerspiegeln. In Kapitel 3.6 stellen wir
einen Ansatz zur Bewertung der Plausibilität von Bewegungsschätzungen mittels eines
Sensormodells vor, der sich das Prinzip der Sichtlinie zunutze macht. Bestehende Sensor-
modelle, wie sie z.B. in der Monte-Carlo Lokalisierung verwendet werden, erlauben eine
relative Gewichtung verschiedener Hypothesen. Wir erarbeiten hingegen ein absolutes
Qualitätsmaß.

Diese Entwicklungen werten wir umfassend aus. Dies erfolgt anhand des beschriebe-
nen Evaluierungsdatensatzes, der es uns erlaubt, die Genauigkeit der Trajektorienrekon-
struktion zu berechnen. Appendix A.1 listet die Ergebnisse unseres Ansatzes für über
40 Sequenzen auf, die verschiedenste Szenarien abdecken, wie z.B. SLAM mit einer
handgeführten oder auf einem Roboter montierten Kamera. In Kapitel 3.7 vergleichen
wir die Ergebnisse mit anderen Ansätzen und zeigen, dass unser Ansatz aktuell zu den
besten SLAM-Systemen gehört.

Unsere Experimente belegen, dass RGB-D Kameras sich hervorragend als Sensoren
für die Kartierung eignen. Eine der größten verbleibenden Limitierungen ist aber das
kleine Sichtfeld. Im Gegensatz zu 3D-Laserscannern, die horizontal meist zwischen 180◦

und 360◦ abdecken, ist das Sichtfeld horizontal nur etwa 57◦ und vertikal etwa 43◦ groß.
Dies und die eingeschränkte Tiefenwahrnehmung (zwischen 0,6 bis 5 m) führen leicht zu
Situationen, in denen nur wenige Daten verfügbar sind, die für die Bewegungsschätzung
verwendet werden können. Gerade bei autonomen Robotern mit statisch montiertem
Sensor kann dies zu Problemen führen, z.B. wenn sich der Roboter unmittelbar vor einer
Tür oder Wand befindet. Deshalb erweitern wir unser SLAM System in Kapitel 4, so dass
mehrere Sensoren verwendet werden können. Wir evaluieren die Vorteile eines zweiten
Sensors in Kapitel 4.1. Dabei zeigt sich, dass ein zweiter Sensor kritische Informationen
liefern kann, die die Kartierung stark verbessern können. Mehrere Sensoren bringen
aber auch höhere Anschaffungskosten, ein höheres Gewicht und höheren Strombedarf
mit sich. Wir entwickeln daher in Kapitel 4.2 eine Erweiterung für RGB-D Kameras,
die das Blickfeld mit Spiegeln aufteilt. Wir zeigen, dass diese Lösung in einer SLAM
Anwendung ähnliche Vorteile für die Genauigkeit bringt wie ein zweiter Sensor.

Um die Daten von mehreren RGB-D Sensoren zu vereinen, müssen deren relative
Positionen kalibriert sein. In Kapitel 4.3 stellen wir einen Ansatz vor, diese Kalibrierung
direkt während der Kartierung zu bestimmen. Dazu formulieren wir Fehlerterme, die
sowohl Informationen aus der geschätzten jeweiligen Eigenbewegung der Sensoren nut-
zen, als auch gemeinsame, zu unterschiedlichen Zeiten entstandene Observationen der
beiden Sensoren. Dieser Ansatz lässt sich sowohl für reguläre RGB-D Kameras nutzen,
als auch um die Teil-Sichtfelder des katadioptrischen RGB-D Sensors zueinander zu
kalibrieren. Für letzteren Sensor entwickeln wir in Kapitel 4.4 spezifischere Varianten

x

der Fehlerterme, welche die bekannte Struktur des Sensors ausnutzt, um die Freiheitsgra-
de des Optimierungsproblems zu vermindern. Wir zeigen experimentell, dass hierdurch
das Konvergenzverhalten der Kalibrierung verbessert wird. Insbesondere ermöglicht der
Ansatz die Kalibrierung der Sichtfelder allein durch Bewegung in der Ebene, also z.B.
während der ersten Fahrt eines Haushaltsroboters.

Ist ein Roboter in der Lage Innenräume zu kartieren und sich zu orientieren kann er
autonome Reinigungs- oder Logistikaufgaben erfüllen. Die aktuelle Generation kom-
merzieller Roboter ist allerdings nicht in der Lage Türen zu öffnen. Dies bedeutet in
den meisten Gebäuden wiederum dass die Umgebung an den Roboter angepasst werden
muss. Türen kontrolliert zu öffnen ist für Roboter eine hoch komplexe Aufgabe, für die
die bisherigen Ansätze zumeist hohe Anforderungen an die Freiheitsgrade und Reichwei-
te des Manipulators stellen. In Kapitel 5 erarbeiten wir Verfahren, mit denen ein Roboter
die kinematischen und dynamischen Eigenschaften einer Tür anhand seiner Beobachtun-
gen modellieren kann. Kapitel 5.2 behandelt dabei die Lernverfahren, die auf 3D Daten
basieren. Um dem Roboter zu ermöglichen seine Umgebung autonom zu modellieren,
entwickeln wir in Kapitel 5.3 ein Verfahren mit dem der Roboter sein Modell interaktiv
initialisieren kann. Dafür nutzen wir taktile Messungen während der ersten Manipulation
der Tür, um eine ungefähre Schätzung der Türdynamik vorzunehmen. Unsere Experimen-
te mit einem Roboter zeigen, dass die Informationen in diesem Modell benutzt werden
können, um die Aufgabenstellung stark zu vereinfachen.

Zusammengenommen ergeben die beschriebenen Verfahren eine neue Grundlage für
die Navigation in Gebäuden, auf welcher Ansätze zur Lösung komplexerer Aufgaben
entwickelt werden können. Im Vergleich zu bisherigen Ansätzen senken unsere Ergebnis-
se dabei die Anforderungen an die Sensoren und Manipulatoren der Roboter wesentlich.
Damit leisten wir der weiteren Verbreitung von autonomen Robotern in Haushalten und
Unternehmen Vorschub.

Acknowledgment

In the following I would like to express my gratitude to the people who made this thesis
possible. First of all, I would like to thank my advisor Prof. Dr. Wolfram Burgard, head
of the Autonomous Intelligent Systems lab, for giving me the opportunity to work in his
group and his continuous support throughout the years. I also want to thank Prof. Dr.
Jeff Trinkle, Dr. Jürgen Sturm and Dr. Rainer Kümmerle for their helpful and motivating
supervision of various parts of my work. I also thank Prof. Dr. Thomas Brox for acting
as a reviewer for this thesis.

I am deeply grateful to the smart and cordial bunch of people in the AIS lab. I have
greatly progressed in many areas thanks to the close collaborations and discussions in a
way which would have been impossible to achieve on my own. Their companionship has
made my time in the lab an outstanding part of my life. There are too many to name all
of them, but I would like to mention a few who have made a special impact. First of all, I
want to reach out to Jürgen Hess, who brought me to the AIS lab during my Master’s. He
sparked the work on RGB-D SLAM and as my office mate was the first person to bounce
my ideas off and to share the joy and sorrows of a PhD student with. Further I want to
mention Christoph Sprunk, who I collaborated with in several endeavors and who always
proved incredibly helpful and supportive.

Last but not least I would like to thank my family and my partner Lena Wenz for their
support and love throughout the years.

Contents

1 Introduction 1
1.1 Key Contributions . 3
1.2 Open Source Software . 4
1.3 Publications . 4
1.4 Collaborations . 5
1.5 Notation . 6

2 Background 7
2.1 Probabilistic Estimation . 7

2.1.1 Maximum a Posteriori . 8
2.1.2 Maximum Likelihood . 9

2.2 Least Squares . 9
2.2.1 Maximizing Probabilities by Error Minimization 9
2.2.2 Linear Least Squares . 11
2.2.3 Non-Linear Least Squares . 12

2.3 Regression . 14
2.3.1 Linear Regression . 15
2.3.2 Locally Weighted Regression 17
2.3.3 Non-Parametric Regression 19

2.4 Robust Estimation Methods . 24
2.4.1 Robust Kernels . 24
2.4.2 Random Sample Consensus 26

3 3D SLAM with an RGB-D Camera 29
3.1 Sparse RGB-D SLAM . 31

3.1.1 Sensor . 32
3.1.2 SLAM Frontend: Motion Estimation 34
3.1.3 SLAM Backend: Graph Optimization 37
3.1.4 Map Representation . 39

3.2 A Benchmark for RGB-D SLAM Approaches 41
3.2.1 RGB-D Benchmark Datasets 41
3.2.2 Error Metric . 42

xiv Contents

3.2.3 Experimental Setup . 44
3.3 Improved Feature Detection and Matching 46

3.3.1 Keypoint Detection . 46
3.3.2 Feature Matching . 47

3.4 Exploiting the Graph Neighborhood for Loop Closure Search 49
3.5 Statistical Graph Pruning for Increased Robustness 50
3.6 A Method for Verifying the Registration of Depth Images 53

3.6.1 Environment Measurement Model 54
3.6.2 Robust Hypothesis Testing . 57
3.6.3 Implementation and Evaluation 57

3.7 Related Work . 59
3.8 Conclusion . 66

4 Multiple View RGB-D Perception 69
4.1 SLAM with Multiple RGB-D Sensors 71
4.2 A Catadioptric Extension for RGB-D Cameras 73

4.2.1 Design . 75
4.2.2 SLAM with the Catadioptric RGB-D Sensor 77

4.3 Calibration of Multiple RGB-D Sensors via SLAM 81
4.4 Calibration of the Catadioptric RGB-D Sensor 83

4.4.1 Reduction to Three Degrees of Freedom 83
4.4.2 Reduction to Two Degrees of Freedom 86
4.4.3 Experimental Evaluation . 86

4.5 Related Work . 88
4.6 Conclusions . 89

5 Interactive Perception and Manipulation of Doors 91
5.1 Articulated Object Dynamics . 95

5.1.1 Rotational Motion . 95
5.1.2 Linear Motion . 97

5.2 Perception of Doors with a Depth Sensor 97
5.2.1 Estimating the Door State . 98
5.2.2 Estimating the Hinge Position 98
5.2.3 Learning the Dynamics . 100

5.3 Interactive Learning of the Dynamics from Tactile Perception 104
5.4 Experimental Evaluation . 106

5.4.1 Experimental Setup . 106
5.4.2 Learning from Human Demonstration 108
5.4.3 Interactive Experimentation 109

Contents xv

5.5 Related Work . 110
5.5.1 Perception of Doors . 110
5.5.2 Manipulation of Doors . 111

5.6 Conclusion . 112

6 Conclusions 115

A Detailed Benchmarking Results 117
A.1 Dataset with Public Ground Truth . 117
A.2 Benchmark Dataset Sequences . 119

Chapter 1

Introduction

While robots have revolutionized industrial mass-production several decades ago, these
robots are hardly more than versatile machines running a complex, but fixed program. In
general, manufacturing robots do not exhibit autonomous intelligence. Except for basic
control flow, they are mostly unaware of their environment and only limited sensory input
is used during operation. Therefore, great care is taken that the environment of the robot
is as predictable as possible, e.g., by using fences to lock humans out of the robot’s
workspace. This almost complete lack of autonomy is one of the major obstacles which
has to be overcome to allow robots to become mobile in a priori unknown environments
and possibly to interact with humans.

However, tremendous steps towards the goal of autonomous intelligent systems have
been achieved in the current millennium. In recent years, autonomous robots that help out
with household tasks have arrived in millions of homes, such as floor cleaning and lawn
mowing robots. Many companies have started up to make a business out of robots that
fulfill complex tasks, involving operation in unknown environments and interaction with
humans. Important groundwork for this revolution has been carried out in the robotics
research community. Particularly the rise of probabilistic methods has led to huge ad-
vancements in the ability of robots to use their sensors in order to acquire a model of the
real world. Combined with the progress in sensor technology and processing power, the
improvement of robotic skills proceeds at a fast pace.

This thesis describes our research undertaken to help mobile robots conquer indoor en-
vironments. Our contributions rank among the many efforts of the robotics community to
refine the fundamental skills of such robots. When a robot is deployed in an environment
such as a home or an office space, it is usually not feasible to equip the robot with an
accurate model of that environment a priori. Therefore, the robot will first need to create
a model of the world. For a mobile robot, this model in general needs to comprise a map
that allows the robot to localize and plan a collision-free path according to its assignment.
Building such a map from on-board sensors is a challenging problem, as the robot needs
to be localized to create a map from sensor measurements, but needs a map to localize
itself. These tasks therefore need to be done concurrently and the problem is hence re-

2 Chapter 1. Introduction

ferred to as simultaneous localization and mapping (SLAM). The SLAM problem has
been subject to intensive research and feasible solutions have been developed for many
scenarios. For robots operating in the plane, the use of onboard laser range scanners, that
measure the closest obstacles in this plane lead to very accurate results. Cameras have
been a viable alternative, particularly for applications where the robot moves in three
dimensions and where laser scanners are too expensive or too heavy, e.g., micro aerial
vehicles such as quadrocopters. However, extracting distance information – as required
for precise localization and for building geometric maps – from monocular camera im-
ages is a hard problem. For this reason, often stereo camera systems have been deployed,
which exploit the known baseline between the camera pair to use triangulation to obtain
the distance to visual features that could be identified in both images. A new type of 3D
camera, called RGB-D camera, has recently been developed in the entertainment industry.
As the term “RGB-D” indicates, these cameras provide dense distance (D) measurements
for almost all color (RGB) pixels. Due to mass production, RGB-D cameras combine the
advantages of cameras, such as low price, low weight, high frame rate, with the ability
to obtain accurate geometric information. To exploit the potential of this novel sensor
type in robotics, we created a SLAM system for RGB-D cameras, which allows a robot
to create a three-dimensional map of its environment in real time during operation. The
system is presented in Chapter 3. We first built it by transferring best practices from
laser and vision based SLAM approaches to the new sensor system and evaluated the
respective performance. We then present several novel methods to improve the accuracy
and robustness of RGB-D SLAM specifically, with a focus on challenging scenarios.

An important measure to robustness that stands out from the proposed algorithmic con-
tributions is the use of multiple viewpoints, which needs to be implemented in software as
well as in hardware. In Chapter 4 we extend our SLAM system to handle multiple RGB-D
cameras and demonstrate the impact of the second sensor on the accuracy in experiments.
As an alternative for robots with tight financial or payload constraints, we propose a novel
catadioptric setup, an RGB-D camera combined with mirrors. The mirrors split the field
of view of a single RGB-D camera such that, e.g., a robot obtains a front and a rear view.
We show that this configuration leads to comparable benefits in a SLAM application
as a second RGB-D camera. The fusion of multiple RGB-D sensors inherently requires
their extrinsic calibration. We propose a novel method for online self-calibration of the
extrinsic parameters via SLAM. In case of the catadioptric RGB-D sensor, we further
derive a method to exploit the known structure of the device to allow calibration from
planar motion only, so that a wheeled robot can fully self-calibrate during operation.

Besides the creation of a map, the navigation of robots in indoor environments typically
requires the opening of doors. To fulfill a transportation task across rooms or to vacuum-
clean all rooms, a robot needs to be able to open doors to be independent of human
help. In Chapter 5 we investigate the modelling of doors from sensor data. In the past,

1.1. Key Contributions 3

research has focused on learning the kinematic properties of the door. We propose to
additionally learn a model of the dynamics of the door, as this allows to handle the door
in a more dexterous way. We devise an approach to learn the kinematics and dynamics
from depth perception which enables the robot to accurately predict the behavior of
the door and to open it with a point contact instead of a fixed grasp. This reduces the
kinematic complexity required, meaning that smaller, cheaper manipulators can be used.

1.1 Key Contributions

To summarize our key contributions to the field of indoor perception for autonomous
mobile robots, we propose

• a SLAM system for RGB-D cameras which employs novel techniques to provide
accurate results even in challenging scenarios,

• an approach for automated extrinsic calibration for multiple RGB-D cameras that
incorporates the calibration into the SLAM backend,

• a catadioptric RGB-D sensor based on a single RGB-D camera, which yields a high
performance benefit for the accuracy of SLAM as compared to a regular RGB-D
camera,

• an approach for quick and accurate estimation of the kinematics of a door from
perception with a depth sensor,

• an approach for learning the dynamics of a door from observing demonstrations or
by autonomous interaction.

To validate the approaches proposed in this thesis we thoroughly evaluated them on data
from real sensors and, if applicable, applied them on real robots.

Our publications regarding RGB-D SLAM were met with vivid interest. We partici-
pated with the initial version of our RGB-D SLAM software in the ROS 3D contest [30]
in 2011, and won the first place in the “most useful” category. The software has since
been used by many groups as a building block. Our evaluation of the RGB-D SLAM
system, published in 2012 [33], has been cited over 180 times. Our paper which describes
the evaluation benchmark [117] has been cited over 160 times since its publication in
2012. Our journal article, which describes most of the contributions in Chapter 3 was
recently published in the Transactions on Robotics, a journal with one of the highest
impact factors in robotics and has led the journal’s ranking of the most popular papers.

4 Chapter 1. Introduction

1.2 Open Source Software

We released major parts of the software developed for this thesis as open source. The
RGB-D SLAM system is available as a github repository1. The extension to multiple
viewpoints and a CAD model to create the catadioptric sensor proposed in Section 4.2
is available on a separate project page2. The estimation of the kinematic structure of a
door is available in the Google code repository of the Autonomous Intelligent Systems
laboratory3. Further, smaller contributions in the form of bug reports, patches or new func-
tionality have been made to the evaluation tools of the RGB-D benchmark 4, OpenCV5

and ROS6.

1.3 Publications

Major parts of this thesis have been published to the scientific community during the
course of work, either in the form of journal articles or as papers submitted to and pre-
sented at conferences. This section lists these publications.

• F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard. An
evaluation of the RGB-D SLAM system. In Proc. of the IEEE International
Conference on Robotics and Automation (ICRA), St. Paul, Minnesota, May 2012.

• F. Endres, J. Hess, N. Engelhard, J. Sturm, and W. Burgard. 6D visual SLAM for
RGB-D sensors. at - Automatisierungstechnik, 60:270–278, May 2012.

• J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for
the evaluation of RGB-D SLAM systems. In Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), Vilamoura, Portugal, 2012.

• F. Endres, J. Trinkle, and W. Burgard. Learning the dynamics of doors for robotic
manipulation. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), Tokyo, Japan, Nov. 2013.

• F. Endres, J. Trinkle, and W. Burgard. Interactive perception for learning the dynam-
ics of articulated objects. In Proceedings of the ICRA 2013 Mobile Manipulation
Workshop on Interactive Perception, Karlsruhe, Germany, May 2013.

1https://github.com/felixendres/rgbdslam v2
2http://ais.informatik.uni-freiburg.de/projects/datasets/catadioptric-rgbd/
3http://alufr-ros-pkg.googlecode.com/svn/trunk/dynamic door manipulation
4https://svncvpr.in.tum.de/cvpr-ros-pkg/trunk/rgbd benchmark/rgbd benchmark tools
5http://opencv.itseez.com
6http://ros.org

https://github.com/felixendres/rgbdslam_v2
http://ais.informatik.uni-freiburg.de/projects/datasets/catadioptric-rgbd/
http://alufr-ros-pkg.googlecode.com/svn/trunk/dynamic_door_manipulation
https://svncvpr.in.tum.de/cvpr-ros-pkg/trunk/rgbd_benchmark/rgbd_benchmark_tools
http://opencv.itseez.com
http://ros.org

1.4. Collaborations 5

• F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard. 3D mapping with an
RGB-D camera. IEEE Trans. on Robotics, 30(1):177–187, Feb 2014.

• F. Endres, C. Sprunk, R. Kuemmerle, and W. Burgard. A catadioptric extension
for RGB-D cameras. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2014.

This thesis does not report on the following publications that have been published during
my time as a research assistant under the supervision of Prof. Wolfram Burgard.

• S. Ito, F. Endres, M. Kuderer, G. D. Tipaldi, C. Stachniss, and W. Burgard. W-RGB-
D: Floor-plan-based indoor global localization using a depth camera and WiFi. In
Proceedings of 2014 IEEE International Conference on Robotics and Automation
(ICRA), Hong Kong, China, 2014.

• F. Endres, J. Hess, and W. Burgard. Graph-based action models for human motion
classification. In ROBOTIK, May 2012.

• C. Plagemann, C. Stachniss, J. Hess, F. Endres, and N. Franklin. A nonparametric
learning approach to range sensing from omnidirectional vision. Robotics and
Autonomous Systems, 58(6):762 – 772, 2010.

• F. Endres, C. Plagemann, C. Stachniss, and W. Burgard. Scene analysis using latent
Dirichlet allocation. In Proc. of Robotics: Science and Systems (RSS), Seattle, WA,
USA, 2009.

• F. Endres, J. Hess, N. Franklin, C. Plagemann, C. Stachniss, and W. Burgard. Es-
timating range information from monocular vision. In Workshop Regression in
Robotics - Approaches and Applications at Robotics: Science and Systems (RSS),
Seattle, WA, USA, 2009.

1.4 Collaborations

Parts of the work for this thesis was done in collaboration with others. To clarify the
attribution of the work described in this thesis, collaborations beyond the supervision of
my Ph.D. advisor Wolfram Burgard and the fruitful discussions with many colleagues is
detailed below.

• The basis of the RGB-D SLAM system as described in Section 3.1 is collaborate
work with Jürgen Hess and Nicholas Engelhard, working under the supervision of
Jürgen Sturm.

6 Chapter 1. Introduction

• The RGB-D benchmark described in Section 3.2 is joint work with Jürgen Sturm,
where the author was mainly involved in the analysis of the error metrics (Sec-
tion 3.2.2), testing of the dataset and evaluation tools, and served as dynamic object
in a few sequences.

• The extrinsic calibration approach described in Section 4.3 was developed under
supervision of Rainer Kümmerle. The experiments in Sections 4.3 and 4.4 where
performed together with Christoph Sprunk.

• The work on modeling of door dynamics for robotic manipulation, described in
Chapter 5, was developed under the supervision of Jeff Trinkle.

1.5 Notation

We use the following notation throughout this thesis.

Symbol Meaning

x, v, I, F . . . scalar value
x,n. . . column vector
xT ,nT . . . row vector
X,M ,. . . matrix
xT ,MT . . . transposed vector, matrix
Λ,Σ information matrix, covariance matrix
N (x;µ,Σ) Normal distribution over x with mean µ and covariance matrix Σ

C,G, T . . . set
D training data set
x mean of a set {. . . ,xi, . . .}
x̂ a quantity derived from, or otherwise related to x
x̃ initial guess
x∗ optimal value of x
x′ a value in the neighborhood of x
∆x a small step away from x

∆xy the difference between x and y, i.e., x− y
⊕,	 operators for motion composition and difference
:= definition

Chapter 2

Background

In this chapter, we discuss probabilistic estimation techniques, which are well established
in robotics and related fields, and which we apply in this thesis. The adoption of proba-
bilistic models is crucial for inferring information from noisy sensor data. To statistically
model real-world data, i.e., data that has not been carefully screened and preprocessed by
experts, we need to take care how we choose the model. Particularly we need to consider
the explicit and implicit assumptions that are inherent to a model or can be otherwise
incorporated into it. On the one hand there are models with convenient statistical and
computational properties but strong assumptions about the data. Such models, e.g., para-
metric models as presented in Sections 2.2 and 2.3 are a good choice as long as the
data meets the underlying assumptions. In this case, the parametric model itself provides
prior information which speeds up the estimation process. On the other hand, if such a
model cannot be conceived beforehand, or the data deviates from the known parametric
models, we need to take measures that relax the assumptions, or drop them completely.
For example, Section 2.3.3 introduces a non-parametric regression approach, which is
based only on few assumptions about the data and mostly relies on the data itself to make
estimates. However, the drawback of techniques with strong reliance on the data is the
need for more training observations before reliable predictions can be performed.

In Section 2.4 we look into approaches that allow us to use parametric models even if
the data deviates from the specific model, or only a part of the data fulfills the assump-
tions.

2.1 Probabilistic Estimation

Many tasks in robotics involve problems of a statistical nature. Robots perceive the world
through sensors and act on it through actuators. These processes are inherently subject to
noise; dealing with uncertainty is therefore fundamental for many algorithms in robotics.
Probabilistic methods allow us to model the statistical nature of the robot’s measurements
as well as the uncertainty about the state of the world (including the robot itself).

8 Chapter 2. Background

As a typical example of probabilistic estimation consider the inference of the probabil-
ity distribution p(x|z). Let the random variable x represent the position of an obstacle
relative to the robot, and the variable z denote a distance measurement, e.g., from a range
sensor. In the following we will refer to the former as the state and to the later as observa-
tion. While we would like to infer the state from the observation, we often cannot directly
assess the conditional probability distribution p(x|z). However, Bayes rule allows us to
rewrite the estimation problem as

p(x|z) =
p(z,x)

p(z)
=
p(z|x)p(x)

p(z)
. (2.1)

This allows us to express p(x|z), the probability of the state given the observation, in
terms of the data likelihood p(z|x), the prior for the state p(x), and the prior for the
observation p(z).

2.1.1 Maximum a Posteriori

In many applications it is not necessary to estimate the full distribution p(x|z), e.g.,
when we are only interested in the state x∗ with the highest probability density for the
observation z, i.e.,

x∗ = argmax
x

p(x|z) (2.2)

= argmax
x

p(z|x)p(x)

p(z)
, (2.3)

where we apply Bayes rule (Equation 2.1) to rewrite the right hand side. Often, the
probability of the observation p(z) can only be computed as the marginal distribution of
the numerator, i.e., ∫

p(z|x)p(x)dx, (2.4)

which is infeasible to compute for a complex state space. In this case, computing only the
state with the highest probability has a crucial advantage, because it allows to simplify
Equation 2.3 to

x∗ = argmax
x

p(z|x)p(x), (2.5)

where we dropped the denominator p(z) as it is independent of x. This is called the
maximum a posteriori solution of p(x|z). The name stems from the fact that commonly
p(x) represents our belief about the state x before we obtain the observation z and is

2.2. Least Squares 9

therefore called prior, whereas the right hand side of Equation 2.5 denotes the maximum
of p(x|z) after observing z.

While applicable to many problems, note that the reduction to the maximum may turn
out problematic, e.g., in situations where the maximum does not represent the distribution
sufficiently well [83], which is often a problem in high dimensional spaces.

2.1.2 Maximum Likelihood

If we do not have any prior belief for the state x, we may apply the principle of indiffer-
ence and assume that every state of x is equally likely and hence p(x) is constant. Thus,
p(x) is a constant independent of x and can therefore be dropped. This leaves us with

x∗ = argmax
x

p(z|x), (2.6)

which is called the maximum likelihood solution, because it only depends on the likeli-
hood of the data p(z|x).

Assuming p(x) to be constant leads to an improper prior [9] for probability densities
on an infinite domain, where the uniform distribution is not properly defined. However,
since the term is dropped this is not a problem in the presented case.

As for maximum a posteriori, this solution is widely applicable, yet comes with further
limitations. A common problem arising from the non-informative prior is overfitting
the parameters to the specific observations. This is often the case when the amount of
observations does not sufficiently constrain the degrees of freedom of the state.

2.2 Least Squares

The method of least squares is ubiquitous in modern statistical analysis and is tightly
connected with the presented probabilistic approach. In this thesis, it has been directly
applied to solve several estimation problems and is the core component of graph-based
SLAM solvers.

2.2.1 Maximizing Probabilities by Error Minimization

Under certain conditions, maximizing the data likelihood or the “a posteriori” distribution
is equivalent to minimizing a sum of squared error terms. Consider the basic problem
of estimating the state of the world x from a number of sensor measurements z, as
introduced above.

Consider a model zt = ht(x) that relates the variable x ∈ Rn to a dependent random
variable zt ∈ Rm. In the state estimation problem, ht(x) represents the physical princi-

10 Chapter 2. Background

ples underlying the measurement of zt given the state x. For time series data, ht(x) may
compute the observation at time t, given a time-dependent model, parameterized with x.
However, the index t is not necessarily related to time. It identifies a measurement and
thus may be used to index a specific pixel of a camera image, or a beam from a laser
range finder.

Assume a model ht(x) that models sensor observations zt with added Gaussian noise.
For a dataset of N measurements D = {z1, . . . ,zN}, we then compute the probability
density of the data as

p(D|x) =
N∏
t=1

N (zt;ht(x),Λ−1t). (2.7)

The maximum likelihood solution x∗ is therefore computed as

x∗ = argmax
x

N∏
t=1

N (zt;ht(x),Λ−1t) (2.8)

= argmax
x

N∏
t=1

νt exp(−1
2
(z − ht(x))TΛt (z − ht(x))), (2.9)

where νt is the normalizing constant of the tth Gaussian distribution, which is independent
of x and can hence be omitted in the following. Further, maximizing the logarithm of a
function leads to the same result as maximization of the function itself [9]. This allows
us to simplify Equation 2.9 to

x∗ = argmax
x

− 1

2

N∑
t=1

(zt − ht(x))TΛt (zt − ht(x)) (2.10)

= argmin
x

N∑
t=1

(zt − ht(x))TΛt (zt − ht(x)). (2.11)

We therefore see, that maximizing the likelihood corresponds to minimizing the sum of
the Mahalanobis distance between the actual and the predicted measurements. Defining
the difference between prediction and observation as

et := et(x) := zt − ht(x) (2.12)

we obtain the more succinct notation

x∗ = argmin
x

N∑
t=1

eTt Λt et (2.13)

2.2. Least Squares 11

Notice that the precision matrices Λt are symmetric and positive semi-definite. To show
that maximum likelihood estimation – under the assumption of uncorrelated Gaussian
noise – can be phrased as a least squares problem we redefine the error as

êt = LTt et = LTt (zt − ht(x)), (2.14)

where Lt is obtained using the Cholesky decomposition Λt = LtL
T
t . This allows to

rewrite Equation 2.11 as

x∗ = argmin
x

N∑
t=1

êTt êt (2.15)

= argmin
x

N∑
t=1

m∑
s=1

ê2ts, (2.16)

where êts is the sth component of the vector êt.

2.2.2 Linear Least Squares

If the model ht(x) is linear with respect to the parameter vector x, the global minimum
can be found in closed form. Consider the problem of estimating the state x ∈ Rn from
N observations zt ∈ Rm with the linear sensor model

ht(x) = Mtx (2.17)

with Gaussian noise, such that

p(zt|x) = N (zt;ht(x),Λ−1t). (2.18)

This allows us to define the error function F (D,x) as

F (D,x) =
N∑
t=1

(zt −Mtx)TΛt(zt −Mtx) (2.19)

=
N∑
t=1

zTt Λtzt − 2zTt ΛtMtx+ xTMT
t ΛtMtx (2.20)

and the derivative is given by

δF (D,x)

δx
=

N∑
t=1

−2zTt ΛtMt + 2xTMT
t ΛtMt. (2.21)

12 Chapter 2. Background

Setting the derivative to zero yields

0 =
N∑
t=1

−2zTt MtΛt + 2xTMT
t ΛtMt (2.22)

N∑
t=1

zTt ΛtMt︸ ︷︷ ︸
1×n

= xT
N∑
t=1

MT
t ΛtMt︸ ︷︷ ︸

n×n

. (2.23)

Thus the vector x∗ that minimizes the squared residual can be directly computed by
solving the above system of linear equations.

2.2.3 Non-Linear Least Squares

In robotic tasks such as SLAM the models ht(x) are often non-linear. E.g., in SLAM a
model will contain non-linear terms due to angular components of the pose and observa-
tions. To approach these problems, we therefore need to drop the linearity assumption.

In SLAM, a robot navigates through an environment and relates the different poses
of its trajectory by sensor measurements. These measurements, e.g., odometry readings,
laser range scans or landmark observations, can be used to estimate the relative transfor-
mation between two poses. For simplicity, we shall assume in the following discussion
that the state x = [. . . ,xTi , . . .]

T contains the poses of the robot at times i, and the mea-
surements to yield constraints that can be expressed by a single model hij(x) describing
the rigid motion between xi and xj , the robot poses at times i and j. Assuming Gaus-
sian noise with covariance Λ−1ij on the measurements zij , each constraint is expressed
mathematically by a quadratic error term

eTijΛijeij, (2.24)

where the definition of eij is analogous to Equation 2.12

eij := eij(x) := zij − hij(x). (2.25)

Similar to Equation 2.13, the error of a state x given the set of measurements G then
follows as

F (D,x) =
∑
ij∈G

eTijΛij eij. (2.26)

and we seek to find x∗, the solution with the minimum error. Given a non-linear model

2.2. Least Squares 13

hij(x), such as

hij(x) = xj 	 xi, (2.27)

where 	 denotes the difference operator for rigid motions in the plane or in space, we
can not compute the global minimum in closed form. Therefore, to find the solution,
iterative methods such as Gauss-Newton or Levenberg-Marquardt are used. Both methods
linearize the model at a state x to find the local gradient and compute a new state with
lower error. The state x̃ used for the first iteration is called the initial guess. Depending
on the specific shape of the error function, the choice of the initial guess is often crucial
for convergence to the global minimum.

For a non-linear model, we can compute the Jacobian Jij at the estimate as x̃

Jij =
δhij(x)

δx

∣∣∣∣
x=x̃

(2.28)

to obtain the local gradient. The Jacobian Jij is used to project the change in the state
space linearly to a change in the sensor space, i.e., the space of zij . Assuming that the
linearization sufficiently approximates the function locally, i.e.,

hij(x̃+ ∆x) ≈ hij(x̃) + Jij∆x (2.29)

we can compute the error at a nearby state x̃+ ∆x by

eij(x̃+ ∆x) = hij(x̃+ ∆x)− zij (2.30)

≈ hij(x̃) + Jij∆x− zij (2.31)

= eij + Jij∆x (2.32)

We can use this approximation to rewrite the error function in Equation 2.26 to

F (D, x̃+ ∆x) =
∑
ij∈G

eij(x̃+ ∆x)TΛij eij(x̃+ ∆x) (2.33)

≈
∑
ij∈G

(eij(x̃) + Jij∆x)TΛij (eij(x̃) + Jij∆x) (2.34)

=
∑
ij∈G

eTijΛeij + 2eTijΛijJij∆x+ ∆xTJTijΛij Jij∆x. (2.35)

This formulation allows us to solve for ∆x∗, the update step that minimizes the error
under the linearity assumption. Analogous to the global solution of the linear case, we

14 Chapter 2. Background

take the first derivative with respect to ∆x

δF (D, x̃+ ∆x)

δ∆x
= 2

∑
ij∈G

eTijΛijJij + 2
∑
ij∈G

∆xTJTijΛij Jij. (2.36)

Setting the derivative to zero yields the following linear system of equations

0 = 2
∑
ij∈G

eTijΛijJij + 2
∑
ij∈G

∆xTJTijΛij Jij (2.37)

−
∑
ij∈G

eTijΛijJij =
∑
ij∈G

∆xTJTijΛij Jij (2.38)

−
∑
ij∈G

eTijΛijJij︸ ︷︷ ︸
bT

= ∆xT
∑
ij∈G

JTijΛij Jij︸ ︷︷ ︸
AT

, (2.39)

In contrast to the solution described by Equation 2.23, the solution to this system of
equations will, in general, not be the optimal solution. Due to the linearization, x+ ∆x

will not be at the correct minimum. The Gauss-Newton algorithm iterates the above
update procedure until the improvement in error is below a threshold. The Levenberg-
Marquardt algorithm interpolates the Gauss-Newton algorithm with gradient descent to
guarantee convergence.

2.3 Regression

Regression problems form an important subset of probabilistic estimation. A common
application of regression methods is curve fitting, where we seek to model a function
zt = f(t) given a set of observations D = {z1 . . . , zN}. While the role of t is similar to
the index t used in the previous section in the sensor model, t here denotes an input value,
such as a location in a continuous space and its value is directly used in the computation.

There are many approaches to this problem, the choice of which depends on the avail-
able prior knowledge about the properties of the function to estimate. In Sections 2.3.1
and 2.3.2 we discuss parametric regression, where we assume that the observations zt
follow a model of a given functional form f(t,x), of which we want to estimate the
parameterization x. In Section 2.3.3 we discuss Gaussian processes, a very versatile
non-parametric regression method with only few prior assumptions about the functional
form of the model.

2.3. Regression 15

2.3.1 Linear Regression

For a particular class of regression problems, the method of least squares can be applied
analogously to the state estimation methods described in the previous sections. If the
process underlying the observations can be modeled by a linear superposition of basis
functions φk(t) and we assume the observations to be subject to uncorrelated Gaussian
noise, the maximum likelihood solution for the coefficient vector x of the model f(t,x)

is given by the least squares solution. Note that the basis functions are, in general, chosen
to be non-linear with respect to the independent variable t.

When a model with few degrees of freedom is used, i.e., a low number of functions are
superposed, the choice of the used basis functions strongly restricts the possible shapes
of the fitted curve. This restriction to a certain shape can be interpreted as a particular
form of a prior and should be motivated by the properties of the problem.

In this thesis, we apply regression in Chapter 5 to determine the deceleration of a door
from friction, by observing its trajectory in form of a datasetD comprised of timestamped
opening angles. Assuming constant friction throughout the trajectory, the underlying
process is known from classical mechanics to take the form of a second order polynomial
with respect to time. Using polynomial basis functions to estimate the function, the
parametric model takes the general form

f(t,x) =
∑d

k=0
φk(t)xk = φTt x (2.40)

where d denotes the degree of the polynomial and the basis functions are defined as

φk(t) = tk. (2.41)

To avoid a cluttered notation, we defined a vector of the basis functions

φTt = [td . . . t0]. (2.42)

Assuming uncorrelated Gaussian noise with zero mean and precision λt on each mea-
surement, the data likelihood under the above parametric model is given by

p(zt|x) = N (zt; f(t,x), λ−1t). (2.43)

This is a univariate form of Equation 2.18 and therefore the maximum likelihood solution
is – analogous to Equation 2.23 – found by solving a system of linear equations of the
form ∑

t
ztλtφ

T
t︸ ︷︷ ︸

1×d

= xT
(∑

t
λtφtφ

T
t

)
︸ ︷︷ ︸

d×d

. (2.44)

16 Chapter 2. Background

Time (Seconds)

0

10

20

30

40

50

60

70

80

 D
o
o
r

O
p

e
n

in
g

 A
n

g
le

 (
D

e
g

re
e
s)

Polynomial Fit

Measurements

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Figure 2.1: Estimation of the trajectory of a released door by using a parametric model for linear
regression of a second order polynomial. The chosen parametric model is highly
robust to the apparent systematic “stepping” error in the sensor data.

Under the assumption of homoscedasticity, i.e., the noise is independent of t, the precision
λt is constant and cancels out, yielding∑

t
ztφ

T
t︸ ︷︷ ︸

1×d

= xT
(∑

t
φtφ

T
t

)
︸ ︷︷ ︸

d×d

. (2.45)

Figure 2.1 shows a measured door trajectory and the corresponding estimated second-
order polynomial. Note, that the linear regression approach is not limited to problems for
which the functional form is known. Given a sufficient degree, fitting a linear combination
of polynomials, or other basis functions, can be used to approximate arbitrary functions.
However, care has to be taken to not fit a complex model to few observations, as the
flexibility of the model will lead to a curve that fits the noise on the observations - a
problem referred to as overfitting.

A further limitation of parametric regression is the extrapolation behavior, i.e., the
shape of the fitted function beyond the limits of the training dataset. As mentioned before,
the shapes which the curve can assume depends on the basis functions. The least squares
solution will superposition the individual functions φk(t), such that the error on the
training dataset is minimized and the shape of the curve approximates the dataset. Going
beyond the dataset in the input space, there are no further constraints on the shape of the
curve. The shape of the curve is therefore only collaterally defined by the training data
and choice of basis functions, and therefore quickly loses any relation to the observed

2.3. Regression 17

0 1 2 3 4 5

Time (seconds)

0

10

20

30

40

50

60

Original Data, Fitted Curve and Time Derivatives

Position Est. (degree)

Velocity Est. (degree/s)

Acceleration Est. (deg/s²)

Measurement (degree)

Figure 2.2: Locally weighted regression (thin black curve) of measured angles (magenta crosses)
of a door opening demonstration. The dashed blue and red curves correspond to the
first and second derivative of the black curve, and thus constitute the estimations of
angular velocity and acceleration. Even though we fitted local polynomials of second
order for this plot, this method is able to capture the variation in deceleration, as
apparent by the red curve.

data. Consider the door arrested by friction shown in Figure 2.1. After stopping, the
door stays at its final opening angle, i.e. the curve should become flat. Yet, the fitted
second order polynomial describes a parabola. Therefore, when extrapolating beyond the
arresting point, it necessarily indicates a re-acceleration in the direction of its original
position.

2.3.2 Locally Weighted Regression

For the task of fitting a curve of known parametric form but unknown coefficients, the re-
gression approach presented in the previous section is highly efficient and robust to noise.
However, in our motivation of the polynomial basis functions, for fitting the trajectory of
a released door, we assumed a constant deceleration from friction. In our experiments we
found that this assumption does not hold in practice. In our application, we are mainly in-
terested in learning the deceleration to make predictions about the trajectory and therefore
require a regression approach that lets us capture this variation.

A straight-forward solution would be to apply the approach from the previous sec-
tion using a model with a much higher number of basis functions. However, we would

18 Chapter 2. Background

−1.0 −0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Tricube

Figure 2.3: The tricube weighting function with length scale 1.

need to determine a degree of freedom which provides a good trade-off between accu-
rate representation of the deceleration and overfitting to noise. Further, while fitting of
a second-order polynomial was directly motivated by the underlying mechanics, it is
unclear, whether the change in deceleration is approximated well by a polynomial, i.e.,
why the polynomial form would be a good prior for the variation in the deceleration.

A solution with a better justification is the use of locally weighted regression [19],
where we reduce the assumption of constant deceleration to a small local neighborhood.
Therefore, instead of solving Equation 2.45 for the whole trajectory, we compute a set of
local solutions in the range of interest. To compute such a local solution around t = t′,
we introduce the weighting function wt′(t) to the error function

Ft′(x) =
∑

t
wt′(t)(zt − φTt x)2. (2.46)

such that only a small (time-)neighborhood influences the solution. In contrast to the
precision λt in Equation 2.44, the value of wt′(t) for a specific t depends on t′. The
weights are computed using a weighting function centered at t′. A common choice is the
tricube kernel [19] shown in Figure 2.3. It is defined by

∆t =
|t′ − t|
l

(2.47)

wt′(t) = (1−∆3
t)

3, for|∆t| < 1 (2.48)

wt′(t) = 0, for|∆t| > 1. (2.49)

Here, l is a length scale, that defines in which distance to t′ the function vanishes. It thus
sets the trade-off between locality and insensitivity to noise. In contrast to the use of a
higher degree of freedom for the parametric model, the choice of this parameter has a
tight connection to the measurement process. It should be set depending on the density,
local variation and accuracy of the observations. For irregular data sampling it is also

2.3. Regression 19

possible to use a fixed number of neighboring observations and adapt the length scale
accordingly.

To determine the local least squares solution at t′, we solve∑
t
ztwt′(t)φ

T
t︸ ︷︷ ︸

1×d

= xT
(∑

t
wt′(t)φtφ

T
t

)
︸ ︷︷ ︸

d×d

. (2.50)

Figure 2.2 shows a door trajectory and the approximate estimations for velocity and
deceleration. It is clearly visible that the deceleration varies substantially. Computing
local solutions to generate the profile of the deceleration comes at a cost: There is no
analytical solution to the deceleration profile, which means we need to apply numerical
methods, e.g., for integration.

2.3.3 Non-Parametric Regression

In general, if prior knowledge about the process underlying the data is known, it is bene-
ficial to exploit it. In the previous sections, we exploited the fact that the trajectory of an
object follows the equations of motion, which relate the observed positions to velocities
and accelerations. In cases where no prior information about the specific shape of the
process is available, it is often more appropriate not to restrict the shape by the selection
of a predefined set of basis functions.

In this section we discuss Gaussian processes (GPs) [102], a non-parametric approach
to regression. In contrast to parametric regression, where we only use the learned coef-
ficients and the basis functions to compute the prediction, the prediction of a GP at an
input location t is computed from the training data itself.

A Gaussian process represents a Gaussian distribution over functions. Consider first a
regular multivariate Gaussian distribution, which is a distribution over a space of finite
dimensions. It is defined by a mean µ and a covariance matrix Σ. The entries of Σ define
the relationship for each pair of dimensions by the covariance of their values. With the
mean and covariance matrix, we can draw samples, i.e., vectors of the given dimensional-
ity, which follow the distribution. An important property of Gaussian distributions is, that
we can compute the conditional distribution in closed form, i.e., given values for a subset
of the dimensions, we can compute the distribution of the remaining dimensions. Further,
the marginal distribution of a Gaussian distribution is readily available, by restricting
µ and Σ to the elements not related to the marginalized dimensions. This last property
allows us to work in spaces of arbitrary (including infinite) dimensionality, by evaluating
only a subset of the dimensions.

A function z = f(t) with t ∈ R can be interpreted as a vector of infinite dimension-
ality z = [. . . , f(t), . . .]T . Each dimension of this vector corresponds to a value of the
continuous independent variable t. A GP represents an infinite dimensional Gaussian dis-

20 Chapter 2. Background

cij = exp(−(di−dj)2

4)

Covariance
Matrix

0.0

0.5

1.0

1 2
Dimension Index d

−2

−1

0

1

2

3

Va
lu

e

Visualization of Samples
as Function Values

−4 −2 0 2 4

Dim. 1

−1

0

1

2

D
im

.2

Visualization of Samples
as Points in Space

(a) Two dimensional samples from a Gaussian process with zero mean.

cij = exp(−(di−dj)2

6)
0.0

0.5

1.0

1 2 3
Dimension Index d

−2

−1

0

1

Va
lu

e

−2
2 −2

2

−2

2

Dim. 1 Dim. 2

D
im

.3

(b) Three dimensional samples from a Gaussian process with zero mean.

cij = exp(−(di−dj)2

10)
0.0

0.5

1.0

1 2 3 4 5
Dimension Index d

−3
−2
−1

0
1
2
3

Va
lu

e

N/A

(c) Five dimensional samples from a Gaussian process with zero mean.

cij = exp(−(di−dj)2

200)
0.0

0.5

1.0

10 20 30 40 50 60 70 80 90
Dimension Index d

−3
−2
−1

0
1
2
3
4

Va
lu

e

N/A

(d) 100 dimensional samples from a Gaussian process with zero mean.

Figure 2.4: Illustration of the function vs. vector space view of the samples drawn from Gaussian
processes. The center and right columns show samples drawn from a zero-mean Gaus-
sian with the covariance matrix shown in the left column. The covariance matrix is
constructed using a function of the input locations and can be used to create matrices
of arbitrary size. Here, we use the squared exponential covariance function, which
places a higher probability to smoother functions because it assigns high covariances
to nearby dimensions (i.e., input locations).

2.3. Regression 21

tribution and thus corresponds to a distribution over functions. As for a regular Gaussian
distribution, a GP can be sampled. Instead of vectors of a finite dimension, a sample of
a GP represents a function. In practice, of course, we cannot draw a sample of infinite
dimensionality, just as we cannot evaluate a given function at every input location. How-
ever, as for functions, we can compute an arbitrarily dense subset of values. Figure 2.4
gives an intuition for the interpretation of functions as vectors and illustrates the concept
of sampling vectors of increasing (but finite) dimensionality from a Gaussian process.

Analogous to a Gaussian distribution a GP is specified by the mean function µ(t) and
the covariance function k(t, t′). The mean function can take any form and is usually set
to the training sample mean (which then needs to be subtracted from the samples). The
covariance function defines the entries of the (infinitely large) covariance matrix. We can
therefore write

f(t) ∼ GP(µ(t), k(t, t′)) (2.51)

The covariance function defines how the values zt and zt′ covariate, based on the input
locations t and t′. In this work we use the commonly used squared exponential covariance
function (cf. [102], Eqn. 2.31). For a univariate input location t it is defined by

kSE(t, t′) = σ2
fexp(−

(t− t′)2
2l2

) (2.52)

where σf is a hyperparameter affecting the amplitude of the sampled functions and l is
the length scale, a hyperparameter that affects the smoothness of the samples. The effect
of different length scales is illustrated in Figure 2.5.

To use Gaussian processes for regression, we want to predict the values z∗ at the input
locations t∗, given a vector of N observations z at the respective input locations t. The
joint distribution of observations and predictions is given by[

z

z∗

]
∼ N

([
µ(t)

µ(t∗)

]
,

[
K(t, t) K(t, t∗)

K(t∗, t) K(t∗, t∗)

])
, (2.53)

whereK(a, b) is a matrix whose elements kij are given by the covariance values k(ai, bj).
For observations with uncorrelated zero-mean Gaussian noise with standard deviation
σn, we need to add the variance to the diagonal ofK(t, t), such that the joint distribution
becomes [

z

z∗

]
∼ N

([
µ(t)

µ(t∗)

]
,

[
K(t, t) + σ2

nI K(t, t∗)

K(t∗, t) K(t∗, t∗)

])
. (2.54)

The predicted values can be obtained as the expected values of the conditional distribution

22 Chapter 2. Background

cij = exp(−(di−dj)2

2×22)

Covariance
Matrix

0.0

0.5

1.0

10 20 30 40 50 60 70 80 90
Dimension Index d

−3

−2

−1

0

1

2

3

4

Va
lu

e

Visualization of Samples
as Function Values

cij = exp(−(di−dj)2

2×102)
0.0

0.5

1.0

10 20 30 40 50 60 70 80 90
Dimension Index d

−3

−2

−1

0

1

2

Va
lu

e

cij = exp(−(di−dj)2

2×202)
0.0

0.5

1.0

10 20 30 40 50 60 70 80 90
Dimension Index d

−3

−2

−1

0

1

2

3

Va
lu

e

Figure 2.5: Illustration of functions sampled from Gaussian processes with different length scale
parameter. Top: l = 2, middle: l = 10, bottom: l = 20.

2.3. Regression 23

p(z∗|z, t, t∗), which is computed as

E(z∗) = µ(t∗) +K(t∗, t) (K(t, t) + σ2
nI)−1 z. (2.55)

The matrix inversion in this equation is the main computational burden of using Gaussian
processes and is in O(N3). Fortunately, it only needs to be updated on new training data.
The term (K(t, t) + σ2

nI)−1z can thus be precomputed after the learning phase, such
that the online runtime of predictions only grows linearly with the training data size.

It is interesting to note the relationship of Gaussian processes to the simpler non-
parametric approach of kernel regression [9, p. 301ff.]. In kernel regression, the prediction
step that corresponds to Equation 2.55 is given by

E(z∗) = µ(t∗) +K(t∗, t) diag(η)−1 z. (2.56)

Here,

ηi =
∑N

j=1
Kij(t

∗, t). (2.57)

are the normalization factors. For each prediction value z∗i , η−1i normalizes the weights
of one row ofK(t∗, t). Comparing Equation 2.55 and Equation 2.56, we now clearly see
that the difference between GPs and kernel regression lies in this rescaling of the weights.
In kernel regression, the weights Kij(t

∗, t) that define the influence of the individual
training values zi on the prediction of z∗ are divided row-wise by a scalar, such that the
overall sum per predicted dimension is one - a regular normalization.

In contrast, for the GP these weights are multiplied with the inverse covariance matrix,
which encodes the covariance among the training data. This is particularly important if
the training data is not uniformly distributed in the neighborhood of the location t∗.

To make this distinction clear, consider a case where ten training observations of value
one have been observed at the same location. An eleventh observation with the value of
zero is a short distance away. If we use kernel regression to predict the value at a point
equidistant between these two clusters, the influence of the first cluster will be about
ten times the influence of the second cluster, and the predicted value will be close to
one. In a GP, however, the prediction will be much closer to 0.5. This is more in line
with the observation process, where we would expect the first ten samples to observe the
same underlying value and therefore be highly correlated. This correlation is taken into
account with a GP. The prediction with the GP does tend slightly towards the first cluster,
however, this is because the repeated observation reduces the uncertainty introduced by
the observation noise σn.

Further differences are manifest in the interpolation and extrapolation behavior. Most
kernels only assume positive values. For such a kernel, kernel regression can not predict

24 Chapter 2. Background

a value that is higher (or lower) than the highest (or lowest) training value because of the
normalization. As a consequence of this, extrapolation of a monotonically increasing (or
decreasing) dataset will at best approach the outermost value asymptotically. For GPs,
the rescaled weights K(t∗, t)(K(t, t) + σ2

nI)−1 will in general not sum to one, as the
second term is independent of the first term. For areas without nearby training data, the
weights of the training data on the prediction will tend to zero, reducing the prediction
to the mean term µ(t∗). On the other hand, the predicted values can easily exceed the
range of the training values, allowing the function to follow a trend – the range of such
behavior depends on the length scale.

2.4 Robust Estimation Methods

The estimation techniques presented in the previous sections all follow the assumption
that all the observed data points follow one type of distribution. In most cases the central
limit theorem can be used to motivate the assumption of Gaussian noise on the observa-
tions. However, in the real world, there often are several sources of error underlying the
distribution of the observed data and only a subset of the data samples contains usable
information about the observed quantities, as e.g., in the case of salt-and-pepper noise
of camera sensors. The subset of samples that follows the model up to noise is referred
to as inliers. The remainder of the samples typically are very unlikely when assuming
Gaussian distributed noise. They are called outliers. If present, even few outliers can have
severe effects on the estimation result. Particularly least squares estimators are very sus-
ceptible to outliers, as one far-off outlier quickly dominates the sum of errors. Therefore
this problem needs to be considered in many estimation problems and has spawned a re-
search field called robust statistics [52] that provides many methods to deal with outliers.
This section briefly covers the concepts applied throughout this thesis.

2.4.1 Robust Kernels

Huber [61] introduced the notion of M-estimators, short for Maximum likelihood-type
estimators, a class of robust kernel functions ρ(e) which replace the squared error terms
e2 of a least squares estimator with a function that reduces the impact of high error
values. This mitigates the described situation of outliers dominating the sum of errors.
According to Huber [61], the goal of using a robust kernel is that small deviation from the
assumptions should impair the performance of the estimator only slightly, while larger
deviations should not cause catastrophic failure. Concisely, to apply a robust kernel to a
sum-of-squares error function, the function

F (x) =
∑

i
e(xi)

2 (2.58)

2.4. Robust Estimation Methods 25

−4 −2 0 2 4
0
1
2
3
4
5
6

Squared

−4 −2 0 2 4
0
1
2
3
4
5
6

L1

−4 −2 0 2 4
0
1
2
3
4
5
6

Huber

−4 −2 0 2 4
0
1
2
3
4
5
6

Welsch

Figure 2.6: Examples for robust kernel functions in comparison to the squared error.

is rewritten to

F̂ (x) =
∑

i
ρ(e(xi)). (2.59)

Numerous choices for the kernel function ρ have been proposed in the literature, e.g.,
the L1 norm (the absolute value) and the so-called Huber function. Instead of quadratic
growth with respect to the residual, these functions grow only linearly for large errors.

The Huber function is quadratic in the vicinity of zero but switches to linear growth at
a threshold k. It is defined as

ρ(e) =

{
e2 if |e| ≤ k

2k|e| − k2 otherwise,
(2.60)

where e is the residual error. Such kernels with gentler growth than quadratic make the
estimate less sensitive to data that does not follow the Gaussian assumption. Yet the
result is still affected by these errors. In cases where outliers carry no information, we
would ideally ignore them completely. There are kernels with constant or even decaying
value for outliers above a certain threshold. While this is useful for input with drastic
violations of the assumed error distribution, it raises the problem of local minima, i.e., the
solution is not unique anymore. Figure 2.6 shows these different types of kernel functions
in comparison to a regular squared error. Of the various alternatives, the Huber kernel
has been reported to be rarely inferior to other choices [131], which has also proven true
in preliminary experiments with the RGB-D SLAM approach presented in Chapter 3.

Unlike regular minimization of the squared error, most robust kernels do not have a
closed form solution, requiring an iterative optimization, also called iterative reweighted
last squares. Since non-linear least squares optimization approaches as discussed in Sec-
tion 2.2.3 are inherently iterative, the adoption of robust kernels comes at almost no cost
in this case. However, the lack of a closed form solution has an important drawback for
kernels with a constant maximum for large errors or even decaying error. As for lineariza-
tion, the value and derivative of the kernel function depends on the estimate. Consider
the estimation of the mean of a set of scalars. The kernel function depends on e, in this
example the deviation from the mean, which can only be computed given an estimate

26 Chapter 2. Background

of the mean – either from the previous iteration or an initial guess. However, a good
initial guess is not trivial to achieve. When using regular least squares to initialize, the
outliers will distort the estimate. For kernels with constant maximum, actual inliers may
be treated as outliers according to the initial guess and will lose their positive influence
on the optimization. For decaying kernels they may even drive the optimization away
from the correct solution.

The next section discusses a robust estimation technique which defeats this problem
by repeatedly computing an estimate from a small random subset of the data, retaining
the best solution as determined by counting inliers.

2.4.2 Random Sample Consensus

Random sample consensus (RANSAC) is an iterative method to make the estimation
of model parameters robust to gross errors in the input data. RANSAC was originally
proposed by Fischler and Bolles [43] in a similar context as found in Chapter 3 and 4,
namely the location determination problem – the problem to estimate the location of
the camera based on visual landmarks with known position. When dealing with visual
landmarks, small errors may occur, e.g., from imperfect calibration. More problematic,
however, is the association of visual landmarks. A wrong association, when incorporated
naively into a least squares estimation, generally introduces a drastic error into the final
estimate. As mentioned in the previous section, robust kernels may be used to lessen the
effect of outliers. However, for problems involving data association errors, the number
of outliers and the magnitude of their error are often too high to be dealt with by robust
kernels alone. While there are kernels that ignore outliers (by yielding a constant value
above a threshold), they require a good initial guess that can be used to distinguish inliers
from outliers.

RANSAC solves the problem by using a small, random subset of the data to generate
a hypothesis, i.e., an estimate of the model parameters. Even if the dataset contains many
outliers, there is a chance that this hypothesis is computed only from inliers. To determine
the quality of the solution, the hypothesis is evaluated based on the number of samples
of the original set that are in agreement with the hypothesis, typically by computing
and thresholding of the residual error with respect to the model estimate. The solution
can then be (possibly iteratively) improved by incorporating the inliers of the current
hypothesis to compute an updated solution. The whole process is repeated with new
initial samples for a given number of iterations. In general, the chance that the model
estimation from outliers will be supported by more samples than a model computed
from the inliers is marginal, particularly in high dimensions. The hypothesis with the
highest support is therefore retained as the final solution. Pseudo-code for RANSAC is
given by Algorithm 1. The number of iterations required to find a solution with a certain
probability can be computed if the ratio of inliers and outliers is known. Even though this

2.4. Robust Estimation Methods 27

Algorithm 1 Pseudocode for the RANSAC algorithm.
Input: Dataset D, Threshold t, Iterations i
Output: Model Parameters P
n := 0 // Size of current set of inliers
for 1 to i do
S := RandomSubset(D)
P̃ := EstimateModelParameters(S)
E := ComputeErrors(D, P̃)
I := ComputeInlierSet(D, E , t)
if Count(I) > n then
P := EstimateModelParameters(I)
n := Count(I)

end if
end for
return P

is rarely the case, this method is often used with approximate values.
There are many variants and extensions for the basic algorithm. The improvements can

be grouped into approaches for higher accuracy, faster execution and higher robustness.
Choi et al. [17] provide a comprehensive overview.

Chapter 3

3D SLAM with an RGB-D Camera

Contents
3.1 Sparse RGB-D SLAM . 31

3.1.1 Sensor . 32

3.1.2 SLAM Frontend: Motion Estimation 34

3.1.3 SLAM Backend: Graph Optimization 37

3.1.4 Map Representation . 39

3.2 A Benchmark for RGB-D SLAM Approaches 41

3.2.1 RGB-D Benchmark Datasets 41

3.2.2 Error Metric . 42

3.2.3 Experimental Setup . 44

3.3 Improved Feature Detection and Matching 46

3.3.1 Keypoint Detection . 46

3.3.2 Feature Matching . 47

3.4 Exploiting the Graph Neighborhood for Loop Closure Search . . . 49

3.5 Statistical Graph Pruning for Increased Robustness 50

3.6 A Method for Verifying the Registration of Depth Images 53

3.6.1 Environment Measurement Model 54

3.6.2 Robust Hypothesis Testing 57

3.6.3 Implementation and Evaluation 57

3.7 Related Work . 59

3.8 Conclusion . 66

30 Chapter 3. 3D SLAM with an RGB-D Camera

In this chapter we investigate simultaneous localization and map-
ping (SLAM) with RGB-D cameras. We develop a system that
generates 3D maps using an RGB-D camera using state-of-the-art
algorithms and introduce several approaches to increase the accu-
racy and the robustness. These include a method for exploiting
the available pose graph to guide the search for matching features,
techniques for improving the performance by online adaptive fea-
ture detection, statistical outlier detection in the graph optimization
and verification of registration results for structured point sets. Fur-
thermore, we present a benchmark for evaluating RGB-D SLAM
systems. We use the benchmark to demonstrate the benefits of the
above approaches, to thoroughly evaluate the performance of the fi-
nal system and to compare it against other approaches. The results
of the experiments demonstrate that our system can robustly deal
with challenging scenarios such as fast camera motions and feature-
poor environments while being fast enough for online operation.
We made the software and the benchmark publicly available. Both
have already been widely adopted by the robotics community.

· · · · ·

The problem of simultaneous localization and mapping (SLAM) is one of the most
actively studied problems in the robotics community in the last decade. The availability
of a map of the robot’s workspace is an important requirement for the autonomous exe-
cution of several tasks including localization, motion planning, and collision avoidance.
Especially for mobile robots working in complex, dynamic environments, e.g., fulfilling
transportation tasks on factory floors or in a hospital, it is important that they can quickly
generate (and maintain) a map of their workspace using their on-board sensors. This,
however, is considered a challenging chicken-and-egg problem because building the map
requires the knowledge of the pose of the robot and finding the pose in turn requires the
map of the environment. Therefore, both the poses of the robot and the map need to be
estimated at the same time.

Given the recent advances in mobile robotics, there is an increasing demand for ef-
ficient solutions that provide three-dimensional metric maps. Manipulation robots, for
example, require a detailed model of their workspace for collision-free motion planning
and aerial vehicles need detailed maps for localization and navigation. Previously 3D
mapping approaches relied on laser scanners or stereo cameras. While 3D laser scan-
ners provide very accurate measurements, they are expensive and heavy, which prohibits

3.1. Sparse RGB-D SLAM 31

their use for consumer products and aerial vehicles. Stereo cameras require texture to
compute the distance measurements from triangulation. However, indoor environments
often contain sections without texture, e.g., monochrome walls, ceilings and floors. The
commercial launch of mass-produced RGB-D cameras provides an attractive, powerful
alternative to laser range scanners and stereo cameras, making 3D perception available at
a fraction of the cost. Similar to stereo cameras, the mode of operation of these RGB-D
cameras is based on triangulation. However, in contrast to the former, they actively project
a pattern in the infrared spectrum and use its perception in an infrared camera for trian-
gulation. Therefore, such an RGB-D camera is independent of the texture in the scene.

In the course of this thesis, we developed one of the first RGB-D SLAM systems that
takes advantage of the dense color and depth images provided by RGB-D cameras. We
propose several techniques that aim at further increasing the robustness and accuracy of
the trajectory estimation. In particular,

• we propose the use of statistical hypothesis testing based on an environment mea-
surement model (EMM) to validate the transformations estimated by feature corre-
spondences or the iterative closest point (ICP) algorithm,

• we identify several key measures that increase the performance of state-of-the-art
keypoint detection and matching methods to obtain reliable results in real-time,

• we propose an approach that selects candidate frames to match new frames against,
that exploits and extends known loop closures,

• and we introduce a statistical outlier detection system to the graph optimization
backend, which further increases the robustness of our system.

Further, we created a benchmark for RGB-D SLAM systems that comprises a huge
variety of real-world scenarios, ground truth pose data and two error metrics. We use
this benchmark to show that our RGB-D SLAM system allows us to accurately track
the robot pose over long trajectories and under challenging circumstances. We provide
comprehensive results for the 44 sequences of the benchmark with public ground truth in
Appendix A. To allow other researchers to use our software, reproduce the results, and
improve on them, we released the presented system and the benchmark as open-source.
The code and detailed installation instructions are available online [34, 37, 116].

3.1 Sparse RGB-D SLAM

In general, a graph-based SLAM system can be broken up into three modules [6, 27]:
Frontend, backend and map representation. The frontend processes the sensor data to
extract geometric relationships, e.g., between the robot and landmarks at different points

32 Chapter 3. 3D SLAM with an RGB-D Camera

Map

Occupancy
Mapping

Frontend

Motion
Estimation

Backend

Graph
Optimization

Sensor
Figure 3.1: Schematic overview of our approach. The frontend processes the sensor data and

extracts geometric constraints between the individual RGB-D frames. The backend
constructs a pose graph from the constraints and estimates the maximum likelihood
solution for the sensor trajectory using non-linear least squares techniques. From the
optimized trajectory we finally generate a voxel occupancy map.

in time. The frontend is specific to the sensor type used. Except for sensors that measure
the motion itself as, e.g., wheel encoders or IMUs, the robot’s motion needs to be com-
puted from a sequence of observations. Depending on the sensor type there are different
methods that can be applied to compute the motion in between two observations. In
the case of an RGB-D camera the input is an RGB image IRGB and a depth image ID.
We determine the landmarks by extracting a high-dimensional descriptor vector d from
IRGB and store them together with their location y ∈ R3 relative to the observation pose
x ∈ R6.

To deal with the inherent uncertainty introduced, e.g., by sensor noise, the backend of
the SLAM system constructs a graph that represents the geometric relations and their
uncertainties. By optimizing this graph structure we can obtain a maximum likelihood
solution for the represented robot trajectory. With the known trajectory we project the
sensor data into a common coordinate frame. However, in most applications a task-
specific map representation is required, as using sensor data directly would be highly
inefficient. We therefore create a three-dimensional probabilistic occupancy map from
the RGB-D data, which can be efficiently used for navigation and manipulation tasks.
We participated with this initial version of our RGB-D SLAM system in the ROS 3D
contest [30] in 2011, and won the first place in the “most useful” category. Shortly after,
we published the first system description [41] and an experimental evaluation [33]. A
schematic representation of the presented system is shown in Figure 3.1. The following
sections describe the illustrated components of the system.

3.1.1 Sensor

Recently introduced RGB-D cameras such as the Microsoft Kinect or the Asus Xtion
Pro Live offer a valuable alternative to laser range scanners, the traditional 3D sensors
in robotics, as they provide dense, high frequency depth information at a low price, size
and weight. The mentioned sensors provide 640 × 480 pixel RGB color images depth
measurements at a frequency of 30 Hz. According to the specifications the latency is
about 90 ms and the range of the depth measurements is 0.5 m to 5.0 m. We found the

3.1. Sparse RGB-D SLAM 33

Figure 3.2: Color and depth images as obtained by a Microsoft Kinect. Comparable data is ob-
tained from the Asus Xtion Pro Live. The gray levels represent the distance of the
depth image. White corresponds to the absence of a measurement.

Figure 3.3: Color and depth as obtained from the project Tango mobile phone from Google.

depth range to be dependent on the lighting conditions and the reflectivity of the surface.
Figure 3.2 shows examples of the obtained depth and color images. To measure the
depth, the sensor projects structured light in the infrared spectrum, which is perceived
by an infrared camera with a known baseline offset. Due to the active structured light,
these sensors are sensitive to illumination. They are therefore generally not applicable
in direct sunlight. In contrast, the preceding time-of-flight cameras, e.g., those from the
SwissRanger series, are less sensitive to sunlight. However, they have lower resolutions,
higher noise, are more difficult to calibrate, and much more expensive.

For the RGB-D cameras, the disparity between the projected pattern and the pattern
observed by the infrared camera is used to compute the depth information by triangulation
using the known baseline. Because of the pixel discretization, the depth is measured in
discretized steps. Unfortunately the step size grows quadratically with the distance to the
sensor [71]. For the Microsoft Kinect and Asus Xtion sensors, the depth image then needs
to be registered to the color image, to obtain maximum accuracy. However, for many
applications, using the per-pixel correspondence between depth and color is sufficient.

34 Chapter 3. 3D SLAM with an RGB-D Camera

For the RGB-D cameras in the recent project Tango prototypes [48], manufactured for
Google, the infrared and color sensing is combined on the same chip. They provide data
at different resolution and lower frequency but otherwise similar to the above cameras,
as illustrated in Figure 3.3. Because the lens and sensor circuit is shared, the user does
not need to calibrate the correspondence of depth and color pixels.

In contrast to stereo vision, the depth measurements of RGB-D cameras are inde-
pendent of the texture of the environment and therefore allow to extract dense RGB-D
information. The infrared pattern does not interfere with the extraction of color or in-
tensity based visual features. On the other hand, for more than one RGB-D camera the
infrared projections will interfere, if they overlap [86].

In this thesis, we focus on RGB-D cameras based on the described principle of a pro-
jected infrared pattern. Nevertheless, while some of the described methods are dependent
on certain properties of the sensor (i.e., frame rate, resolution, density, color), many of
the described methods also apply to other sensing methods that provide visual and depth
information.

3.1.2 SLAM Frontend: Motion Estimation

3.1.2.1 Visual Features

The frontend of our SLAM system uses the sensor input in form of landmark positions
Y = y1, . . . ,yn to compute geometric relations zij which allow us to estimate the mo-
tion of the robot between the states xi and xj . Visual features ease the data association
for the landmarks. Their appearance is quantified by a feature descriptor and measures
for the similarity of these descriptors can be defined. We then match pairs of the keypoint
descriptors (di,dj) by computing their distance in the descriptor space. For the popular
feature descriptors SIFT [82] and SURF [7] the commonly used distance metric is the
Euclidean distance, i.e., |di − dj|. For ORB, being a binary descriptor, the Hamming
distance is used. By itself, however, the distance is not a criterion for association as the
distance between corresponding descriptors can vary greatly. Due to the high dimension-
ality of the feature space it is generally not feasible to learn a mapping for a rejection
threshold. As proposed by Lowe [82], we resort to the ratio between the distance to the
nearest neighbor (dn1) and the distance to the second nearest neighbor (dn2) in feature
space. For SIFT and SURF this is

r =
|di − dn1|
|di − dn2|

. (3.1)

Under the assumption that a keypoint only fits to exactly one other keypoint in another
image, the distance to the second nearest neighbor should be much larger. Thus, a thresh-
old on the ratio between the distances to the nearest and second nearest neighbor can be

3.1. Sparse RGB-D SLAM 35

Figure 3.4: Detected keypoints using SIFT (GPU) and sparse optical flow from a previous frame.

used effectively to control the ratio between false negatives and false positives. To make
the nearest neighbor search fast, we use the library for fast approximate nearest neigh-
bor search, FLANN [90], as implemented in the OpenCV library [10]. The choice of
feature detector and descriptor largely influences the accuracy and runtime performance
of our system. We employ the implementations of the OpenCV library in our system,
which lets us choose from a wide range of keypoint detectors and feature extractors.
We found the respective combinations of detectors and descriptor for SIFT, SURF, and
ORB [106] to provide different trade-offs between accuracy and runtime. Where SIFT is
the most accurate, ORB is the fastest to compute, and SURF occupies the middle ground
in both categories. For SIFT, we further incorporated a GPU-based implementation [127]
to reduce the high runtime penalty.

Another influential choice is the number of features extracted per frame. To limit the
runtime for extracting and matching the features, we limit the number of keypoints to 600
per frame. A higher limit does not improve the accuracy noticeably. Figure 3.4 shows an
example of selected keypoints, and their motion computed from matching to a previous
frame.

In Section 3.3 we discuss techniques to improve the performance of the standard
OpenCV features.

3.1.2.2 Registration

We use a least-squares estimation method [121] to compute the motion estimate from the
established 3D point correspondences. To be robust against false positive matches, we
employ RANSAC [43] when estimating the transformation between two frames, which
proves to be very effective against individual mismatches. See Section 2.4.2 for a brief
description of the RANSAC algorithm. We quickly initialize a transformation estimate
from three feature correspondences. The transformation is verified by computing the

36 Chapter 3. 3D SLAM with an RGB-D Camera

inliers using a threshold θ based on the Mahalanobis distance between the correspond-
ing features. For increased robustness in case of largely missing depth values, we also
include features without a depth reading into the verification. It has been highly bene-
ficial to recursively re-estimate the transformation. In every recursion step, we reduce
the threshold θ for the inlier determination, as proposed by Chum et al. [18]. Combined
with a threshold for the minimum number of matching features for a valid estimate, this
approach works well in many scenarios.

With increasing size of the mapped area, indoor environments introduce additional
challenges. Man-made environments usually contain repetitive structures, e.g., the same
type of chair, window or repetitive wallpapers. Given enough similar features through
such identical instances the corresponding feature matches between two images result
in the estimation of a bogus transformation. The threshold on the minimum number
of matches reduces the number of erroneous estimates from random similarities and
repetition of objects with few features. However, our experiments show that setting the
threshold high enough to exclude estimates from systematic misassociations comes with
a performance penalty in scenarios without the mentioned ambiguities. The alternative
robustness measures proposed in Section 3.6 and 3.5 are therefore highly beneficial in
challenging scenarios.

To take the strongly anisotropic uncertainty of the measurements into account the
transformation estimates can be improved by minimizing the squared Mahalanobis dis-
tance instead of the squared Euclidean distance between the correspondences. This has
been independently investigated by Henry et al. [56] and referred to as two-frame sparse
bundle adjustment. We implemented this approach by applying g2o (see Section 3.1.3)
after the motion estimation. We optimize a small graph consisting only of the two sensor
poses and the previously determined inliers. However, in our experiments, this additional
optimization step shows only a slight improvement of the overall trajectory estimates. We
also investigated including the visual features directly as landmarks in the global graph
optimization as it has been applied by other researchers, e.g., Maier et al. [85]. Con-
trary to our expectations we again observed only minor improvements. As the number of
landmarks is much higher than the number of poses, the optimization runtime increases
substantially. This method is therefore not feasible for online operation. Recent work in
computer vision shows that full bundle adjustment requires clusters of computers [2] or
powerful graphics hardware [45] to build larger maps of outdoor scenes within a day.

3.1.2.3 Visual Odometry and Loop Closure Search

Applying an egomotion estimation procedure between consecutive frames provides visual
odometry information. However, the individual estimations are noisy, particularly in
situations with few features or when most features are far away, or even out of range.
Combining several motion estimates by additionally estimating the transformation to

3.1. Sparse RGB-D SLAM 37

frames other than the direct predecessor substantially increases accuracy and reduces the
drift. Successful transformation estimates to much earlier frames, i.e., loop closures, may
drastically reduce the accumulating error.

To find large loop closures we randomly sample l frames from a set of designated
keyframes. The set of keyframes is initialized with the first frame. Any new frame that
cannot be matched to the most recent keyframe is added as a keyframe to the set. In this
way, the number of frames used for sampling is greatly reduced, while the field of view
covered by the keyframes contains most of the perceived area.

3.1.3 SLAM Backend: Graph Optimization

The pairwise transformation estimates between sensor poses, that are computed by the
SLAM frontend, form the edges of a pose graph. Due to estimation errors, the edges form
no globally consistent trajectory. To compute a globally consistent trajectory we optimize
the pose graph using the g2o framework by Kümmerle et al. [77]. The g2o framework
performs a minimization of a non-linear error function that can be represented as a graph.
Assuming measurements (e.g., the motion estimates) with uncorrelated Gaussian noise,
leads to an iterative optimization as detailed in Section 2.2.3. In brief, we minimize a
sum-of-squares error function of the form

F (X) =
∑
ij∈C

e2ij (3.2)

with

e2ij = e(xi,xj, zij)
>Ωij e(xi,xj, zij) (3.3)

to find the optimal trajectory X∗ = argminX F (X). Here, X = (x>1 , . . . ,x
>
n)>

comprises the sensor poses we want to estimate. Furthermore, the terms zij and Ωij

represent respectively the mean and the information matrix of a constraint relating the
poses xi and xj , i.e., the pairwise transformation computed by the frontend. Finally,
e(xi,xj, zij) is a vector error function that measures how well the poses xi and xj
satisfy the constraint zij . It is 0 when xi and xj perfectly match the constraint, i.e., the
difference of the poses exactly matches the estimated transformation.

The optimization is especially beneficial in case of large loop closures, i.e., when
revisiting known parts of the map, since the loop closing edges in the graph diminish
the accumulated error. Unfortunately, large errors in the motion estimation step can
impede the accuracy of large parts of the graph. This is primarily a problem in areas
of systematic misassociation of features, e.g., due to repeated occurrences of objects,
but may also happen due to systematic sensor noise introduced by the large steps in
the discrete depth measurements for distant points. For challenging data where several
bogus transformations are found, the trajectory estimate obtained after graph optimization

38 Chapter 3. 3D SLAM with an RGB-D Camera

may be highly distorted. To mitigate this problem, we apply robust kernels to the error
function. Section 2.4.2 discusses robust kernels in detail. A robust kernel replaces the
squared terms of the error function with other M-estimator functions which take the same
(non-squared) error as input, but increase slower than the squared error. This effectively
changes the Gaussian error assumption to distributions with heavier tails. A variety of
such M-estimator functions has been proposed in the literature [131]. In preliminary
experiments, we found that the robust kernels Huber, Cauchy and the recently proposed
dynamic covariance scaling [1] improve the robustness of the optimization results. The
Huber kernel worked best in our setting. Further approaches to increase the robustness
of the graph optimization are proposed in Sections 3.5 and 3.6.

Since the main computational cost of optimization lies in solving a system of linear
equations, we investigated the effect of the used solver. g2o provides three solvers, two of
which are based on Cholesky decomposition (CHOLMOD, CSparse) and one implements
preconditioned conjugate gradient (PCG). CHOLMOD and CSparse are less dependent of
the initial guess, than PCG, both in terms of accuracy and computation time. In particular
the runtime of PCG drastically decreases given a good initialization. In online operation
this is usually given by the previous optimization step, except when large loop closures
cause major changes in the shape of the graph. Due to this property, PCG is suggested
for online operation. However, for offline optimization the results from CHOLMOD and
CSparse are more reliable.

To deal with large-scale problems, we do not optimize the full graph in every time step.
Depending on the application, a specific subgraph is selected for optimization.For visual
odometry applications, we optimize in each time step only the nodes corresponding to
frames for which a motion estimate was successfully computed. Because of the small size
of this subgraph, the optimization time is negligible for most settings and can typically
be done in real-time. We also use this approach in our offline experiments to achieve a
better initial guess for the final optimization. The drawback of this strategy is that the
information of loop closures will in general not be propagated through the graph, as the
major part of the loop will be held fixed and be ignored respectively. If the map needs
to be updated online, but the local optimization does not suffice, we can achieve a better
approximation by including the nodes between the oldest frame that was matched since
the previous optimization (i.e., to which the largest loop has been closed) and the current
frame. This strategy yields almost exact results in most cases and therefore provides a
compromise between fast optimization times in the absence of large loop closures and
the quality of the map. However, the optimization time is not bounded and may spike for
large loop closures.

3.1. Sparse RGB-D SLAM 39

Figure 3.5: Occupancy voxel representation of the sequence “fr1 desk” with 1 cm3 voxel size.
Occupied voxels are colored for easier viewing.

3.1.4 Map Representation

The system, as described above, computes a globally consistent trajectory. Using this
trajectory we can project the original point measurements into a common coordinate
frame, thereby creating a point cloud representation of the world. Such models, however,
are highly redundant and require vast computational and memory resources, therefore
the point clouds are often subsampled, e.g., using a voxel grid.

To overcome the limitations of point cloud representations, we use 3D occupancy
grid maps to represent the environment. In our implementation, we use the octree-based
volumetric mapping framework OctoMap [58]. The voxels are managed in an efficient
tree structure that leads to a compact memory representation and inherently allows for
accessing the stored occupancy values at multiple resolutions. The use of probabilistic
occupancy estimation furthermore provides a means of coping with noisy measurements
and errors in pose estimation. A crucial advantage in contrast to a point-based represen-
tation, is the explicit representation of free space and unmapped areas, which is essential
for collision avoidance and exploration tasks.

The memory efficient 2.5D representation in a depth image can not be used for storing
a complete map. Using an explicit 3D representation, each frame added to a point cloud
map requires approximately 3.6 Megabytes in memory. An unfiltered map constructed
from an office-sized scene as used in our experiments would require between two and five
Gigabytes. In contrast, the corresponding OctoMaps with a resolution of 2 cm ranges from

40 Chapter 3. 3D SLAM with an RGB-D Camera

Figure 3.6: Occupancy voxel map of the PR2 robot. Voxel resolution is 5 mm. Occupied voxels
are colored for easier viewing.

only 4.2 to 25 Megabytes. A further reduction to an average of few hundred kilobytes
can be achieved if the maps are stored binary (i.e., only “free” vs. “occupied”).

On the downside, the creation of an OctoMap requires more computational resources
since every depth measurement is raycasted into the map. The time required fro process-
ing each frame is highly dependent on the voxel size, as the number of traversed voxels
per ray increases with the resolution. Raycasting takes about one second per 100,000
points at a voxel size of 5 cm and a maximum range of 4 m on a single core. At a 5 mm
resolution, as in Figure 3.6, raycasting a single RGB-D frame took about 25 seconds on
an Intel Core i7 CPU with 3.40 GHz. For generating a voxel map online we therefore
need to lower the resolution and raycast only a subset of the cloud. In our experiments,
using a resolution of 10 cm and a subsampling factor of 16 allowed for 30 Hz updates of
the map and resulted in maps suitable for online navigation. However, a voxel map can-
not be updated efficiently in case of major corrections of the past trajectory as obtained
by large loop closures. Depending on the application it may therefore be reasonable to
delay voxelization, recreate the map in case of a disruptive loop closure, or to create local
submaps.

3.2. A Benchmark for RGB-D SLAM Approaches 41

3.2 A Benchmark for RGB-D SLAM Approaches

The difficulty of a SLAM problem is highly dependent on the available sensor data. With
an RGB-D sensor such as the Microsoft Kinect, under good conditions a very accurate
map can be produced using adaptations of existing algorithms. Many approaches have
been proposed since the availability of Kinect-style RGB-D cameras that have proven
to be capable of accurately mapping an office-sized room. Unfortunately only few ap-
proaches were evaluated on datasets of which the difficulty can be judged. In this respect
a public dataset and common error metrics to benchmark novel approaches can greatly
stimulate the development of novel algorithms. Published results allow the comparison
of different approaches and enable scientists to identify and focus on the most promising
methods. These datasets and metrics need to be carefully designed, such that the measure-
ments obtained from the benchmark reflect the quality desired in practical applications.
There are several benchmark datasets available in the computer vision and robotics com-
munity that can be used to demonstrate the performance of SLAM approaches. As low-
cost RGB-D sensors based on structured light became available only recently, no such
benchmarking dataset has been available. We therefore created such a benchmark, con-
sisting of datasets with ground truth information for the sensor trajectory and several tools
to analyze the performance. Furthermore we used the presented RGB-D SLAM system
to create a baseline for future comparisons. For all sequences with public ground truth, ap-
pendix A.1 details the accuracy that our approach achieves with the techniques proposed
in the following sections. We also use this benchmark dataset throughout this chapter, to
evaluate the performance impact of the individual contributions. Other researchers have
meanwhile adopted the benchmark for the experiments in their publication and reported
results. We are therefore able to present a comparison to those approaches in Section 3.7.

In the following we describe the dataset, the proposed error metric and details about
the experimental settings used for the evaluations conducted in this thesis.

3.2.1 RGB-D Benchmark Datasets

In the benchmark we provide RGB-D datasets aimed at different application scenarios.
The datasets consist of RGB-D sequences captured with two Microsoft Kinects and one
Asus Xtion Pro Live sensor. Synchronized ground truth data for the sensor trajectory,
captured with a high precision motion capturing system, is available for all sequences.
For the evaluations in this chapter, we will use the two datasets aimed at evaluation of
SLAM systems, “Handheld SLAM” and “Robot SLAM”. The former consists of eleven
sequences, partly recorded in an office building (prefixed with “fr1”) and partly recorded
in an industrial hall (prefixed with “fr2”). The sequences of the “Handheld SLAM” cat-
egory were recorded with a handheld RGB-D camera. The motion of the sensor covers
all six degrees of freedom. The sequences include a wide range of challenges. The “fr1”

42 Chapter 3. 3D SLAM with an RGB-D Camera

set of sequences contains, for example, fast motions, motion blur, quickly changing light-
ing conditions and short-term absence of salient visual features. Overall, however, the
scenario is office-sized and rich on features. Figure 3.5 shows a voxel map our system
created for the “fr1 desk” sequence. The “fr2” sequences, particularly those of the “Robot
SLAM” category, combine many properties that are representative of highly challenging
input. Recorded in an industrial hall, the monochrome floor contains few distinctive vi-
sual features. Due to the size of the hall and the comparatively short maximum range of
the Kinect, the sequences contain stretches with hardly any visual features with depth
measurements. Further, occurrence of repeated instances of objects of the same kind can
easily lead to faulty associations. Some objects, like cables and tripods, have a very thin
structure, such that they are visible in the RGB image, yet do not occur in the depth
image, resulting in features with systematically wrong depth information. The repeatedly
occurring poles have a spiral pattern that, similar to a barber’s pole, suggests a vertical
motion when viewed from a different angle. Several sequences also contain short periods
of sensor outage. All sequences except one contain loops.

The “Robot SLAM” category consists of four sequences recorded with the foot of the
sensor mounted rigidly on a Pioneer 3 robot. The motion of these sequences is therefore
roughly restricted to planar motion and mostly steady. However, gaps in the floor and
cables make the robot rock jerkily, leading to fast changes of the field of view. Note that,
even though the sequences contain wheel odometry and the motion is roughly restricted
to a plane, we make no use of any additional information in the presented experiments.

Appendix A.2 lists all sequences of the benchmark with public ground truth, with
detailed properties such as the trajectory length and duration. Further information about
the dataset can be found on the benchmark’s web page [116] and our corresponding
publication [117].

3.2.2 Error Metric

The benchmark also provides evaluation tools to compute error metrics given an estimated
trajectory. Depending on the application, the quality of a SLAM algorithm manifests itself
in different properties. For an online robot navigation task both the accuracy of the map
and the localization of the robot are important. If the goal is to obtain the best possible
map using a handheld sensor, only the quality of the map is of concern. Unfortunately,
accurate ground truth for a 3D map is hard to obtain for real world scenarios. The error
metric chosen in this work therefore does not directly assess the quality of the map but
focuses on the reconstruction of the trajectory. One may argue that the map error and the
trajectory error of a specific dataset depend on the given scene and the definition of the
respective error functions. Nevertheless, it is reasonable to assume that the error in the
map will, in general, be highly correlated to the error of the trajectory.

The first error metric, called the relative pose error (RPE), was proposed by Kümmerle

3.2. A Benchmark for RGB-D SLAM Approaches 43

et al. [76]. The RPE is based on the difference of relative poses between the ground truth
and the estimate for given time steps. For a trajectory estimate X̂ = {x̂1 . . . x̂n} and the
corresponding ground truthX it is defined as

eRPE(X̂,X) =
1

N

∑
ij∈T

trans(δ̂ij 	 δij)2 + rot(δ̂ij 	 δij)2, (3.4)

where δ̂ij and δij denote the relative transformation in time step ij in the estimate and
ground truth, i.e., x̂j 	 x̂i and xj 	xi. Here and above,	 denotes the motion difference
operator. N is the number of relative transformations evaluated. The functions trans and
rot compute (and possibly weight) the rotational and translational part of this difference.
To avoid the scale-dependent summation of rotational and translational errors, they can
be computed and assessed separately. The advantage of assessing the relative pose dif-
ferences, particularly if nearby poses are used, is the independence of the order in which
the errors are introduced.

Kümmerle et al. leave the question open how the relative transformations, i.e., the set of
time steps T , should be chosen in general. They suggest to make the choice dependent on
the focus of the experimental evaluation. Choosing a set of adjacent poses emphasizes the
local drift, while differencing poses that are further apart highlights the global consistency.

An alternative error measure provided with the benchmark is the absolute trajectory
error (ATE), which measures the difference in terms of the absolute offset between corre-
sponding poses. It is defined as

eATE(X̂,X) =
1

n

n∑
i=1

||trans(x̂i)− trans(xi)||2, (3.5)

i.e., the mean of the squared Euclidean distances between the corresponding poses. To
make the error metric independent of the coordinate system in which the trajectories
are expressed, the trajectories are aligned in an optimization step that finds the unique
minimum of the above squared error between corresponding points (using the same
techniques as for the alignment of visual features). The correspondences of poses are
established using the timestamps. In contrast to the RPE, the ATE thus emphasizes the
global consistency. However, the results of our SLAM system show that the RPE and the
ATE are strongly correlated, as visible in Figure 3.7. An advantage of the ATE over the
RPE is the intuitive visualization of the error, as shown in Figure 3.8. We chose to use the
ATE in our experiments, as it condenses the error into only one number and has a single,
unambiguous definition. We take the square root of the mean squared error (RMSE), to
obtain a result in meter instead of square meter, which is more intuitive.

44 Chapter 3. 3D SLAM with an RGB-D Camera

10-2 10-1 100 101 102 103

Absolute Trajectory Error (RMSE) [m]

10-1

100

101

102

R
el

at
iv

e
Po

se
 E

rr
or

 (R
M

SE
) [

m
, r

ad
]

π

π
2

ATE vs RPE translation
ATE vs RPE rotation

Figure 3.7: Comparison of SLAM error metrics. The strong correlation between the “Absolute
Trajectory Error” “and the Relative Pose Error” metrics is clearly visible. The rota-
tional error converges near π2 , which is the expected average for randomly distributed
rotations.

3.2.3 Experimental Setup

For the evaluation of the contributions presented in the following sections of this chapter,
we compare the quantitative results when using the proposed techniques to those of the
baseline system. If not denoted otherwise, we aggregate the results over the sequences of
a dataset (i.e., “Handheld SLAM”, “Robot SLAM” or both). The variation of the results
is shown by box plots, as the distribution of the error is usually not symmetric. While
the matching strategy and RANSAC introduce randomness, the variation due to these
factors is low. Since a SLAM system has many parameterized trade-offs, we also often
aggregate over various parameter settings. This serves to evaluate the generality of the
results. In the course of our work, we often found that certain techniques are beneficial
in special settings only. We avoided to incorporate results that only hold for such special
cases and discuss this property where applicable.

We used an Intel Core i7 CPU with 3.40 GHz, and an nVidia GeForce GTX 570
graphics card (only used for the GPU implementation of SIFT), for all experiments.
Except where otherwise noted, the presented results were obtained offline, processing
every recorded frame, which makes the qualitative results independent of the performance

3.2. A Benchmark for RGB-D SLAM Approaches 45

3 2 1 0 1 2 3
x [m]

3

2

1

0

1

2

3

y
[m

]

ATE RMSE: 0.10 m

Ground Truth
Estimate
Difference

(a) “Pioneer 360” sequence

4 3 2 1 0 1 2 3
x [m]

3

2

1

0

1

2

3

4

y
[m

]

ATE RMSE: 0.16 m

Ground Truth
Estimate
Difference

(b) “Pioneer SLAM” sequence

3 2 1 0 1 2 3
x [m]

3

2

1

0

1

2

3

y
[m

]

ATE RMSE: 0.12 m

Ground Truth
Estimate
Difference

(c) “Pioneer SLAM2” sequence

4 3 2 1 0 1 2 3
x [m]

3

2

1

0

1

2

3

4

y
[m

]

ATE RMSE: 0.19 m

Ground Truth
Estimate
Difference

(d) “Pioneer SLAM3” sequence

Figure 3.8: The plots show top-views of the ground truth and the estimated trajectory of the
“Robot SLAM” dataset. The red lines represent the (non-squared) summands in the
absolute trajectory RMSE (Equation 3.5) and thus illustrate the error terms used.
Only every tenth difference is shown for clarity.

of the used hardware. However, the presented system has also been successfully used for
real-time mapping. The results with such a configuration can be found in Section 3.7,
where we compare our approach against other RGB-D SLAM approaches for which a
quantitative evaluation on the datasets of the benchmark has been published.

Appendix A states the accuracy achieved with our RGB-D SLAM approach, when
combining all the techniques proposed in this chapter. To serve as a useful reference

46 Chapter 3. 3D SLAM with an RGB-D Camera

for performance comparisons, we state the trajectory error for every sequence of the
benchmark, as obtained with a single parameterization.

3.3 Improved Feature Detection and Matching

As mentioned in Section 3.1.2.1, the performance of a feature based SLAM system
greatly depends on the used algorithms and values of the parameters used for keypoint
detection, description and matching. This section discusses techniques to improve the
state-of-the-art implementations in the OpenCV library [10].

3.3.1 Keypoint Detection

The keypoint detectors of SIFT, SURF and ORB use a threshold on the saliency of key-
points to limit the number of keypoints computed. Low thresholds lead to high computa-
tional cost for feature-rich images. High thresholds lead to a lack of features in images,
e.g., with motion blur. OpenCV offers the functionality for dynamically adapting the
threshold, but it proved to be too costly for online performance. In our published evalua-
tions [33, 38], we therefore used the default thresholds of the OpenCV implementations.
For challenging scenarios, however, we found that these thresholds led to suboptimal
results. Huang et al. [60] reported a reduced failure rate for RGB-D odometry using an
adaptive threshold for FAST keypoints. We therefore investigated the keypoint detection
process and found likewise that substantial improvements could be achieved by adaptive
thresholds for sequences with motion blur and changes in lighting, e.g., when the camera
is pointed at a window. We further found that the default implementation of the threshold
adjuster in OpenCV is not suited for real-time video processing. The threshold adapta-
tion steps are small, so that many iterations are required. The detection is unnecessarily
rerun in case of too many features, instead of discarding the excessive keypoints with
the weakest response. Moreover, the adjusted threshold is not retained for the next frame.
By introducing changes to avoid these inefficiencies, the dynamic adaptation can be used
online without major runtime penalty.

To obtain a uniform feature distribution, Huang et al. [60] split the image into patches
of 80×80 pixels and retain only the best 25 keypoints per patch. We also divide the input
image into a grid (2×2 or 3×3 cells) to avoid the agglomeration of the keypoints, which is
mostly a problem for the ORB detector. In addition, we parallelize the keypoint detection
of the cells and use independent thresholds for each part. A global threshold always needs
to adapt to the cell with the least salient texture, which leads to the costly computation
of unnecessary many keypoints in the remaining cells. These additions are particularly
important for SURF, where the keypoint detection dominates the overall runtime. To not
lose any keypoints, the grid cells need to overlap by the maximum keypoint diameter.

3.3. Improved Feature Detection and Matching 47

Regular Dyn.-Adjust. Grid-Adjust.
Keypoint Detection Type

0.00

0.05

0.10

0.15

0.20
AT

E
 R

M
SE

 (m
)

Median
50% Qnt.
95% Qnt.

(a) “fr1” Sequences

Regular Dyn.-Adjust. Grid-Adjust.
Keypoint Detection Type

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

AT
E

 R
M

SE
 (m

)

Median
50% Qnt.
95% Qnt.

(b) “Robot SLAM” dataset

Figure 3.9: Evaluation of the impact of the improved keypoint detection. Left: The benefits are
small for the (already very accurate) results of the feature-rich “fr1” scenarios in the
“Handheld SLAM” category. Right: For more challenging scenarios, as found in the
“Robot SLAM” category, the error is substantially reduced. Results are accumulated
over the feature types SIFT (CPU), SURF and ORB.

Again, the basic functionality for the subdivision is available in OpenCV, yet without
provisions for the overlap, therefore losing keypoints at the inner borders of the grid,
and without the ability of parallel processing or individually adaptive thresholds. As a
consequence of these techniques, the trajectory error for the challenging “Robot SLAM”
dataset is substantially reduced, as shown in Figure 3.9b. For the feature-rich office
scenarios, shown in Figure 3.9a, the effect of these measures is less pronounced but
nevertheless visible.

Figure 3.10 shows the improvements per feature type. Particularly the initially worse
accuracy of ORB greatly gains on the other feature types and even outperforms them in
some sequences.

3.3.2 Feature Matching

Matching non-binary feature descriptions, such as those for SIFT and SURF, is com-
monly approached by using the Euclidean distance between the feature vectors. Recently,
Arandjelović and Zisserman [5] propose to use the Hellinger kernel to compare SIFT fea-
tures. They report substantial performance improvements for object recognition. In our
experiments we could observe improved matching of features, which led to a reduction of
the trajectory error of up to 25.8% for individual scenarios. However, for most sequences
in the used datasets, the improvement was not significant, as the error is dominated by

48 Chapter 3. 3D SLAM with an RGB-D Camera

Regular
ORB

Regular
SIFT
(CPU)

Regular
SURF

Grid-Adj.
ORB

Grid-Adj.
SIFT
(CPU)

Grid-Adj.
SURF

Feature Types

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

AT
E

 R
M

SE
 E

rr
or

 (m
)

Median
50% Qnt.
95% Qnt.

Figure 3.10: Evaluation of the impact of the improved keypoint detection per feature type. It is
clearly visible that all feature types benefit from the improvements. Particularly the
ORB feature attains approximately equal performance to SURF and SIFT (CPU),
while retaining the advantage of its low runtime cost. The plots are accumulated
over the datasets used in Figure 3.9, i.e., “fr1” and “Robot SLAM”.

effects other than those from erroneous feature matching. As the change in distance mea-
sure neither increases the runtime noticeably, nor affects the memory requirements, we
suggest the adoption of the Hellinger distance.

For matching ORB features we found that the nearest neighbor ratio, as proposed by
Lowe for SIFT (see Section 3.1.2.1, Equation 3.1) to distinguish inliers from outliers,
is not as stable as for SIFT. For SIFT and SURF features, this ratio followed a similar
distribution in the scenarios we evaluated, so that a fixed threshold can be applied (values
between 0.5 and 0.8 have worked well for us). In contrast, the ambiguity of ORB features
increases strongly, e.g., with the occurrence of motion blur, such that the threshold results
either in a low amount of matches in difficult situations or many outliers otherwise.
Having too few matches substantially hurts the transformation estimates, hence a strict
threshold for the ratio should be avoided. Many outliers impact the required iterations
for RANSAC. We therefore threshold the matches at a permissive ratio of 0.95 but retain
only the M = 150 matches with the best ratio.

After introducing the above changes, ORB features offer the best trade-off between
speed, accuracy and robustness for online processing. The high extraction speed shifts
the performance bottleneck to the nearest neighbor search in the feature matching. For
SIFT and SURF, we used the FLANN library, which also provides locality sensitive hash-
ing [46] (LSH), a nearest neighbor search which yields good results for binary features.
We typically only extract up to 800 features per frame. For such small amounts of features

3.4. Exploiting the Graph Neighborhood for Loop Closure Search 49

LSH is slower than brute force matching. To obtain real-time performance while keeping
the accuracy and robustness high, we modified the computation of the hamming distance
for ORB descriptors. The hamming distance is the number of differing bits. The binary
XOR operation on two bit sequences results in a sequence in which the bits are set where
the input bits differ. The hamming weight (the number of bits set, also called popcount)
of this sequence then yields the hamming distance. There are many fast methods that
compute the hamming weight, e.g., the method of Wegner [122] which is linear in the
number of set bits, and the use of lookup tables. The lookup table method uses the bit
sequence for indexing an array, which contains the precomputed hamming weights at
the appropriate positions. This method executes in constant time but requires excessively
large tables for long bit sequences. Standard ORB features require 32 bytes (256 bits),
thus a single table is infeasible (2256 ≈ 1077 bytes). The standard implementation for the
computation of the hamming distance in OpenCV uses a lookup table with a table size
of 256, so that the hamming distance is aggregated byte-wise. We reimplemented the
computation of the hamming distance using the 64 bit POPCNT CPU instruction, which
is available, e.g., in the Intel Core i7 architecture since 2008. This reduces the distance
computation for 32 byte ORB features to 4 XOR operations, 4 POPCNT operations and
3 summations. In our experiments, using our implementation of the Hamming distance
computation in the brute force search for matching features yields a speedup by a factor
of 8 compared to the respective OpenCV implementation of brute force search. Com-
pared to LSH, the performance is improved by a factor of 9.6 to 15 (using 2600 and 600
features per frame respectively).

3.4 Exploiting the Graph Neighborhood for Loop
Closure Search

In this section we improve our initial strategy for matching the current set of features
to those of earlier frames, as described in Section 3.1.2.3. Even though we only search
for loop closures in the set of keyframes, the computational expense grows linearly with
the number of estimates. For multi-core processors, this is mitigated to a certain degree,
since the individual frame-to-frame estimates are independent and can therefore be easily
parallelized. However, a comparison of a new frame to all predecessor frames is not
feasible and the possibility of estimating a valid transformation is strongly limited by the
overlap of the field of view, the repeatability of the keypoint detector and the robustness
of the keypoint descriptor.

Therefore, we require a more efficient strategy for selecting candidate frames for which
we estimate the transformation. Recognition of images in large sets of images has mostly
been investigated in the context of image retrieval systems [93] but also for large scale

50 Chapter 3. 3D SLAM with an RGB-D Camera

SLAM [20]. While these methods are required for datasets spanning hundreds of kilome-
ters, they require an offline training step to build efficient data structures. Other research
groups proposed to use the current trajectory estimate as a basis to compute a potential
geometric relationship, i.e. distance or view overlap between frames, to decide whether
the frames should be matched. This is very effective for systems with frequent closure
of small loops. However, loop closing is most valuable when the loop is big and a lot of
drift has accumulated. In these cases, approaches based on the geometry of the trajectory
will likely fail.

We therefore propose an efficient, straightforward-to-implement algorithm to suggest
candidates for frame-to-frame matching. It is based on the available graph structure and
complementary to the approaches described above. We employ a strategy with three dif-
ferent types of candidates. Firstly, we apply the egomotion estimation to n immediate
predecessors. To efficiently reduce the drift, we secondly search for loop closures in the
geodesic graph-neighborhood of the previous frame. We compute a minimal spanning
tree of limited depth from the pose graph, with the sequential predecessor as the root
node. We then remove the n immediate predecessors from the tree to avoid duplication
and randomly draw k frames from the tree with a bias towards earlier frames. We there-
fore guide the search for potentially successful estimates by those previously found. In
particular, when the robot revisits a place, once a loop closure is found, this procedure
exploits the knowledge about the loop by preferring candidates near the loop closure
during sampling.

Figure 3.11 shows a comparison between a pose graph constructed without and with
sampling of the geodesic neighborhood. The extension of found loop closures is clearly
visible. The graphs have both been created while matching each frame to 9 others. For
the graphs on the left we compared n = 3 immediate predecessors and k = 6 randomly
sampled keyframes. The graphs on the right have been created with n = 2, k = 5 and
l = 2 sampled frames from the geodesic neighborhood.

3.5 Statistical Graph Pruning for Increased Robustness

The graph optimization backend is a crucial part of our SLAM system. It significantly
reduces the drift in the trajectory estimate. However, in some cases, the graph optimiza-
tion may result in a distorted trajectory. Common causes for this are, e.g., wrong “loop
closures” due to repeated structure in the scenario, or highly erroneous transformation
estimates due to systematically wrong depth information. Fast motions may lead to such
problems in current sensor hardware, because of rolling shutters and missing synchro-
nization of the color and infrared camera’s shutter. Thin structures such as cables and
thin poles or pipes are often visible in the color image but not in the depth image. This
leads to sets of visual features with a consistent offset in their position and motion. The

3.5. Statistical Graph Pruning for Increased Robustness 51

(a) Pose graph for “fr1 floor”, regular ap-
proach

(b) Pose graph for “fr1 floor”, with graph-
distance based sampling

(c) Pose graph for “fr1 desk2”, regular ap-
proach

(d) Pose graph for “fr1 desk2”, with graph-
distance based sampling

Figure 3.11: Pose graph for the sequences “fr1 floor” and “fr1 desk2”. Left: Transformation
estimation only to consecutive predecessors and randomly sampled frames. Right:
Additional exploitation of previously found matches using the geodesic neighbor-
hood. In both runs, the same overall number of candidate frames for frame-to-frame
matching were processed. On the challenging “Robot SLAM” dataset, this reduces
the average error by 26 %.

validity of transformations can therefore not be guaranteed in every case. However, given
several constraints, of which only some are affected by these errors, the residual error
of the edges in the graph after optimization allows to detect such inconsistencies. We
therefore propose to prune inconsistent transformations in the graph. For this we use a
threshold on the summands of the error function after the initial convergence, i.e., on

e2ij = e(xi,xj, zij)
>Ωij e(xi,xj, zij) (3.6)

(see also Equation 3.3). Each summand represents the Mahalanobis distance between the
measurement and the estimate. After pruning the edges, we continue the optimization.
We successively iterate the method from coarse to fine, so that the initial optimization of
the graph is the basis for pruning with a permissive threshold. The result is then used as
the initial guess for the next pruning step with a stricter threshold. This iterative approach
prunes the edges with the highest error first. This allows the estimates that were affected
by these edges to converge according to the remaining edges. If pruning were done in

52 Chapter 3. 3D SLAM with an RGB-D Camera

None e>5 e>1 e>0.25
Graph Pruning

0.00

0.05

0.10

0.15

0.20

0.25

0.30

AT
E

 R
M

SE
 E

rr
or

 (m
)

Median
50% Qnt.
95% Qnt.

Figure 3.12: Our approach for pruning edges yields additional robustness against outliers. “None”
denotes regular optimization with the Huber kernel. The remaining results denote
successive optimization iterations, where edges with residual error higher than e
are pruned from the graph. The error is given by the Mahalanobis distance of the
optimized pose offset to the original pose offset associated with the edge. The results
are accumulated over the challenging “Robot SLAM” dataset and the feature types
SURF, SIFT (CPU), and ORB.

a single step, the error in the estimate, caused by the erroneous edges, could lead to the
premature pruning of “good” edges. This procedure can be interpreted as a robust kernel
(see Section 2.4.1) with constant error outside of a threshold, which is initially set to
infinity and iteratively reduced after convergence. However, as we entirely remove the
edges from the graph, the computational cost of the optimization is decreased.

Interestingly, Fischler and Bolles [43] describe (and dismiss) a similar approach in
the context of low dimensional parameter estimation techniques, where one first uses
all data to find an initial guess, then removes the furthest outlier and reiterates. They
report unsatisfactory results for a line estimation problem and propose RANSAC instead.
However, RANSAC is not feasible for selecting the “good” edges of the graph. The reason
is that hypotheses that include large loop closures – which are required for reducing drift
– will not have a larger consensus set than those without.

Figure 3.12 shows experimental results on the “Robot SLAM” dataset, which demon-
strate the improvement in accuracy obtained using different thresholds. For these se-
quences, the presented approach is a crucial step towards reliable mapping. For lower
thresholds than shown (<0.25), the estimates become unreliable. While the final solution
then often converges to the edges with the “best” measurement, the average of several
good edges is often superior. In our experiments we found that the thresholds shown in
Figure 3.12 consistently work well across scenarios.

3.6. A Method for Verifying the Registration of Depth Images 53

3.6 A Method for Verifying the Registration of Depth
Images

Motion estimation techniques such as ICP and feature correspondence based alignment
with RANSAC are core components of state-of-the-art SLAM systems. It is therefore
crucial that the estimates are reliable. Given a high percentage of inliers after optimiza-
tion, both methods may be assumed successful. However, a low percentage does not
necessarily indicate an unsuccessful transformation estimate and could be a consequence
of a small overlap between the frames or few visual features, e.g., due to motion blur,
occlusions or lack of texture. Hence, both methods lack a reliable failure detection.

We therefore propose a method to verify a transformation estimate, independent of the
estimation method used. Our method exploits the availability of structured dense depth
data, in particular the contained dense free-space information. We propose the use of a
beam-based environment measurement model (EMM). An EMM can be used to penalize
pose estimates under which the sensor measurements are improbable given the physical
properties of the sensing process. In our case, we employ a beam model, to penalize
transformation estimates for which observations in one depth image should actually be
occluded by observations of the other depth image. Consider for example a wall that is
about one meter in front of the sensor and we perceive this wall twice, from the same pose.
However, for some reason the transformation estimate between the poses is misplaced by
half a meter towards the wall. If we assume the estimate to be valid, we would assume
there are two walls. However, in that case the nearer wall should have occluded the further
wall, therefore the observation of the further wall is in conflict with the transformation
estimate.

EMMs have been extensively researched in the context of 2D Monte Carlo Localization
and SLAM methods [119], where they are used to determine the likelihood of particles
on the basis of the current observation. Beam-based models have been mostly used for
2D range finders such as laser range scanners, where the range readings are evaluated
using ray casting in the map. While this is typically done in a 2D occupancy grid map, a
recent adaptation of such a beam-based model for localization in 3D voxel maps has been
proposed by Oßwald et al. [94]. Unfortunately, the EMM cannot be trivially adapted for
our purpose. First, due to the size of the input data, it is computationally expensive to
compute even a partial 3D voxel map in every time step. Second, since a beam model only
provides a probability density for each beam [119], we still need to find a way to decide
whether to accept the transformation based on the observation. The resulting probability
density value obtained for each beam does not constitute an absolute quality measure.
Neither does the product of the densities of the individual beams. The value for, e.g., a
perfect match will differ depending on the range value. In Monte Carlo methods, the
probability density is used as a likelihood value that determines the particle weight. In

54 Chapter 3. 3D SLAM with an RGB-D Camera

yi

yj

yq

yp

Camera A Camera B

yk

TAB

Occlusion

Inlier

Outlier

y'

y'

Figure 3.13: Two cameras and their observations aligned by the estimated transformation TAB .
In the projection from camera A to camera B, the data association of y′i and yj is
counted as an inlier. The projection of y′q cannot be seen from Camera B, as it is
occluded by yk. We assume that each point occludes an area of one pixel. Projecting
the points observed from camera A to camera B, the association between y′i and yj
is counted as inlier. In contrast, yp is counted as outlier, as it falls in the free space
between camera A and observation y′q. The last observation, yk is outside of the
field of view of camera A and therefore ignored. Hence, the final result of the EMM
is 2 inliers, 1 outlier and 1 occluded.

the resampling step, this weight is used as a comparative measure of quality between the
particles. This is not applicable in our context as we do not perform a comparison between
several transformation candidates for one measurement. We thus need to compute an
absolute quality measure.

3.6.1 Environment Measurement Model

To compute an absolute quality measure for a given estimate of the transformation be-
tween two depth images, we propose to use a procedure analogous to statistical hypothesis
testing. In our case the null hypothesis being tested is the assumption that after applying
the transformation estimate, spatially corresponding depth measurements stem from the
same underlying surface location.

To compute the spatial correspondences for an alignment of two depth images I ′D and
ID, we project the points y′i of I ′D into ID to obtain the points yi (denoted without the
prime). The image raster allows for a quick association of yi to a corresponding depth

3.6. A Method for Verifying the Registration of Depth Images 55

reading yj ∈ ID. Since yj is given with respect to the sensor pose it implicitly represents
a beam, as it contains information about free space, i.e., the space between the origin
and the measurement. Points that do not project into the image area of ID or onto a pixel
without valid depth reading are ignored. Figure 3.13 illustrates the different cases of
associated observations.

For the considered points we model the measurement noise according to the equations
for the covariances given by Khoshelham and Elberink [71], from which we construct
the covariance matrix Σj for each point yj . The sensor noise for the points in the second
depth image is represented accordingly. To transform a covariance matrix of a point to
the coordinate frame of the other sensor pose, we rotate it using R, the rotation matrix of
the estimated transformation, i.e., Σi = RTΣ′iR.

The probability for the observation yi given an observation yj from a second frame
can be computed as

p(yi | yj) = η p(yi,yj), with η = p(yj)
−1 (3.7)

Since the observations are independent given the true obstacle location z we can rewrite
the right-hand side to

p(yi | yj) = η

∫
p(yi,yj | z) p(z) dz, (3.8)

= η

∫
p(yi | z) p(yj | z) p(z) dz, (3.9)

= η

∫
N (yi; z,Σi)N (yj; z,Σj) p(z) dz. (3.10)

Exploiting the symmetry of Gaussians we can rewrite this to

p(yi | yj) = η

∫
N (z;yi,Σi)N (z;yj,Σj)p(z) dz. (3.11)

The product of the two normal distributions contained in the integral can be rewritten [97]
so that we obtain

p(yi | yj) = η

∫
N (yi;yj,Σij)N (z;yc, Σ̂ij)p(z) dz, (3.12)

where yc = (Σ−1i + Σ−1j)−1(Σ−1i yi + Σ−1j yj)
−1, (3.13)

Σij = Σi + Σj and Σ̂ij = (Σ−1i + Σ−1j)−1. (3.14)

56 Chapter 3. 3D SLAM with an RGB-D Camera

The first term in the integral in Equation 3.12 is constant with respect to z, which allows
us to move it out of the integral

p(yi | yj) = η N (yi;yj,Σij)

∫
N (z;yc, Σ̂ij)p(z) dz. (3.15)

Since we have no prior knowledge about p(z) we assume it to be a uniform distribution.
As it is constant, the value of p(z) thus becomes independent of z and we can move it
out of the integral. We will see below that the posterior distribution remains a proper
distribution despite the choice of an improper prior [9]. The remaining integral only
contains the normal distribution over z and, by the definition of a probability density
function, reduces to one, leaving only

p(yi | yj) = ηN (yi;yj,Σij) p(z). (3.16)

Having no prior knowledge about the true obstacle also means we have no prior knowl-
edge about the measurement. This can be shown by expanding the normalization factor

η = p(yj)
−1 =

(∫
p(yj|z) dz

)−1
(3.17)

=

(∫
N (yj; z,Σj)p(z) dz

)−1
(3.18)

and using the same reasoning as above, we obtain

p(yj)
−1 =

(
p(z)

∫
N (z;yj,Σj) dz

)−1
(3.19)

= p(z)−1 (3.20)

Combining Equation 3.20 and Equation 3.16, we get the final result

p(yi | yj) = N (yi ; yj,Σij) (3.21)

= N (∆yij; 0,Σij), (3.22)

where ∆yij = yi − yj . We can combine the above three-dimensional distributions of
all data associations to a 3N -dimensional normal distribution, where N is the number of
data associations. Assuming independent measurements yields

p(Yi | Yj) = N (∆Y | 0,Σ) ∈ R3N , (3.23)

where ∆Y = (. . . , ∆y>ij , . . .)
> is a column vector containing the N individual terms

∆yij . The column vectors Yi and Yj analogously contain the corresponding landmarks

3.6. A Method for Verifying the Registration of Depth Images 57

of the two depth images, and Σ contains the respective covariance matrices Σij on the
(block-) diagonal.

The above formulation contains no additional term for “short readings” as given
in [119], i.e., unexpectedly short measurements. The reason is that we expect a static
environment during mapping and want to penalize such short readings, as it is our main
indication for misalignment. In contrast, range readings that are projected behind the
corresponding depth value, are common, e.g., when looking behind an obstacle from a
different perspective. “Occluded outliers”, the points projected far behind the associated
beam (e.g., further away than three standard deviations) are therefore ignored. However,
we do want to use the positive information of “occluded inliers”, points projected closely
behind the associated beam, which in practice confirm the transformation estimate.

A standard hypothesis test could be used for rejecting a transformation estimate at a
certain confidence level, by testing the p-value of the Mahalanobis distance for ∆Y for
a χ2

3N distribution (a chi-square distribution with 3N degrees of freedom). In practice,
however, this test is very sensitive to small errors in the transformation estimate and
therefore hardly useful. Even under small misalignments, the outliers at depth jumps will
be highly improbable under the given model and will lead to rejection. We therefore
describe a measure that varies more smoothly with the error of the transformation in the
following.

3.6.2 Robust Hypothesis Testing

Analogously to non-parametric statistical hypothesis tests, we use the parametric hy-
pothesis test only on the distributions of the individual observations Equation 3.22 and
compute the fraction of outliers as a criterion to reject a transformation. Assuming a per-
fect alignment and independent measurements, the fraction of inliers within, e.g., three
standard deviations can be computed from the cumulative density function of the normal
distribution. The fraction of inliers is independent of the absolute value of the outliers
and thus smoothly degenerates for increasing errors in the transformation while retaining
an intuitive statistical meaning. Our experimental evaluation, described in the following
section, shows that applying a threshold on this fraction allows to effectively reduce
the number of highly erroneous transformation estimates and obtain a greatly improved
quality of the map.

3.6.3 Implementation and Evaluation

Our system estimates the transformation of captured RGB-D frames to a selection of pre-
vious frames. After computing such a transformation, we compute the number of inliers,
outliers, and occluded points, by applying the three sigma rule to Equation 3.22. As stated,

58 Chapter 3. 3D SLAM with an RGB-D Camera

points projected within a Mahalanobis distance of three are counted as inliers. Outliers
are classified as occluded if they are projected behind the corresponding measurement.

The data association between projected point and beam is not symmetric. As shown
in Figure 3.13, a point projected outside of the image area of the other frame has no
association. Nevertheless, in the reversed process it could occlude or be occluded by a
projected point. We therefore evaluate both, the projection of the points in the new depth
image to the depth image of the older frame and vice versa. To reduce the requirements
on runtime and memory, we subsample the depth image. In the presented experiments
we construct our point cloud using only every 8th row and column of the depth image,
effectively reducing the cloud to be stored to a resolution of 80 by 60. This also decreases
the statistical dependence between the measurements. In our experiments, the average
runtime for the bidirectional EMM evaluation was 0.82 ms per depth image pair.

We compute the quality q of the point cloud alignment using the number of inliers I
and the sum of inliers and outliers I +O as q = I

I+O
. To avoid accepting transformations

with nearly no overlap we also require the inliers to be at least 25 % of the observed
points, i.e., inliers, outliers and occluded points.

To evaluate the effect of rejecting transformations with the EMM, we ran experiments
with eight minimum values for the quality q. To avoid reporting results depending on
a specific parameter setting, we show statistics over many trials with varied parameters
settings.

Analogous to the findings for the statistical pruning of edges presented in Section 3.5,
our approach yields only minimal impact on the results for the “fr1” dataset. A q-threshold
from 0.25 to 0.9 results in a minor improvement over the baseline (without EMM). The
number of edges of the pose graph is only minimally reduced and the overall runtime
increases slightly due to the additional computations. For thresholds above 0.95, the
robustness decreases. While most trials remain unaffected, the system performs substan-
tially worse in a number of trials. We conclude from these experiments, that the error
in the “fr1” dataset does not stem from individual misalignments, for which alternative
higher-precision alignments are available. In this case, the EMM-based rejection will
provide no substantial gain, as it can only filter the estimates.

In contrast, the same evaluation on the four sequences of the “Robot SLAM” category
results in greatly increased accuracy. The rejection of inaccurate estimates and wrong
associations significantly reduces the error in the final trajectory estimates. As apparent
in Figure 3.14a the use of the EMM decreases the average error for threshold values up
to 0.9.

3.7. Related Work 59

None 0.50 0.75 0.85 0.90
Required Inlier Fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
AT

E
 R

M
SE

 (m
)

Median
50% Qnt.
95% Qnt.

(a)

None 0.50 0.75 0.85 0.90
Required Inlier Fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
oc

es
si

ng
 T

im
e

pe
r

Fr
am

e
(s

)

Median
50% Qnt.
95% Qnt.

(b)

Figure 3.14: Evaluation of the proposed environment measurement model (EMM) for the “Robot
SLAM” scenarios of the RGB-D benchmark for various quality thresholds. (a) The
use of the EMM substantially reduces the error. (b) Due to the reduced number and
increased consistency of the constraints, the graph optimizer converges faster, which
greatly reduces the overall runtime.

3.7 Related Work

Because SLAM is such a fundamental problem for mobile robots, there has been intensive
research on the subject for over two decades. The SLAM community has proposed a huge
variety of SLAM approaches that cover all kinds of sensors, optimization techniques and
map representations.

Wheeled robots often rely on laser range scanners, which commonly provide very
accurate geometric measurements of the environment at high frequencies. To compute
the relative motion between observations, many state-of-the-art SLAM systems use vari-
ants of the iterative-closest-point (ICP) algorithm [8, 44, 107]. A variant particularly
suited for man-made environments uses the point-to-line metric [15]. Recent approaches
demonstrate that the robot pose can be estimated at millimeter accuracy [103] using two
laser range scanners and ICP. Disadvantages of ICP include the dependency on a good
initial guess to avoid local minima and the lack of a measure of the overall quality of
the match (see Section 3.6 for an approach to the latter problem). The resulting motion
estimates can be used to construct a pose graph [49, 50, 66, 77]. Approaches that use pla-
nar localization and a movable laser range scanner, e.g., on a mobile base with a pan-tilt
unit or at the tip of a manipulator, allow precise localization in 3D using a 2D sensor. In
combination with an inertial measurement unit (IMU), this can also be used to create a

60 Chapter 3. 3D SLAM with an RGB-D Camera

No Pruning Edge Pruning
 e>5

Edge Pruning
e>1

Edge Pruning
e>0.25

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
AT

E
 R

M
SE

 (m
)

Without EMM Verification
With EMM Verification

Figure 3.15: The EMM verification method presented in this section, and the statistical graph
edge pruning presented in Section 3.5 both yield a higher accuracy. The best results
are obtained when combining both approaches. The evaluation comprises 240 runs
on the challenging “Robot SLAM” scenario, accumulating results from various
parameterizations for the required EMM inlier fraction (as in Fig. 3.14), feature
count (600-1200) and matching candidates (18-36).

map with a quadrocopter [51]. However, since a laser range scanner only covers a 2D
slice of the world at any given time, creating a dense 3D model is much faster when using
a 3D sensor.

Visual SLAM approaches [23, 40, 72, 113], also referred to as “structure and motion
estimation” [65, 92] compute the robot’s motion and the map using cameras as sensors.
Stereo cameras are commonly used to gain sparse distance information from the disparity
in textured areas of the respective images. Many techniques used in our SLAM system
are adapted from those used for visual SLAM with stereo cameras.

RGB-D sensors provide high resolution visual and geometric information at the same
time. This is particularly useful in robot navigation. The dense depth information lets us
reliably map the free space, i.e., where the robot can pass. The combination of color with
dense depth information allows us to estimate the robot motion based on correspondences
of visual features, photoconsistency, and ICP variants.

In contrast to 2D point clouds as given by laser range scanners, for the Microsoft Kinect
the number of points is increased by several orders of magnitude. This can be reduced by
subsampling the point cloud; however, a sufficient representation of a 3D scene obviously
requires substantially more data than a 2D slice of it. More problematic than the size of

3.7. Related Work 61

the data sets is the limited field of view, which amplifies the problem of having sufficiently
distinctive geometric structure. Ambiguous scenarios, analogous to the “long corridor” in
2D SLAM, are therefore common in RGB-D data. Further, the increased dimensionality
of the search space from three to six degrees of freedom results in a greater dependency
on a good initialization. In consequence of the mentioned problems, a straightforward
application of ICP to RGB-D data will not achieve a comparable performance to that in
the case of 2D laser range scanner data.

Nevertheless, ICP can be applied successfully for motion estimation in 3D. Gener-
alized ICP [110] is an ICP variant particularly designed for 3D point clouds, and can
employ a point-to-plane metric to reduce spurious motions along the principal planes
of a scene, e.g., floor and walls. However, except in situations with highly unambiguous
geometry and few visually salient keypoints, there has been no improved accuracy in the
motion estimate of GICP as compared to the estimate from feature correspondences in
our experiments.

RGB-D Odometry

The density and high frame rate of the depth information prompted a number of novel
approaches for RGB-D odometry. Huang et al. [60] propose an odometry approach based
on tracking FAST keypoints [104]. Since rotation may cause big motions in distant
features, they first estimate the rotation and then search for the keypoint in a small window,
using a 9×9 patch of intensity values for matching. To reduce the short-term drift, they
keep one reference keyframe, which is only replaced when it goes out of view. Some of the
techniques they use for keypoint detection are similar to ours, as detailed in Section 3.3.1.
They published their software under the name Fovis. Whelan et al. [124] and Handa
et al. [53] report results on Fovis which are included in Table 3.1 and Figure 3.18.

Steinbruecker et al. [112] propose a transformation estimation based on the minimiza-
tion of an energy function. For frames close to each other, they achieve an improved
runtime performance and accuracy compared to GICP. Using the distribution of normals,
Osteen et al. [95] improve the initialization of ICP by efficiently computing the difference
in orientation between two frames, which allows them to substantially reduce the drift.
These approaches work well for small incremental changes between consecutive frames,
an assumption that is justified by the high frame rate of the RGB-D sensors. Other groups
propose adaptations of ICP to deal with the high amount of data more efficiently [25, 100]
or to include the additional information from color [124] or visual features [56].

Dryanovski et al. [26] proposed a real-time capable approach using keypoints as land-
marks in a global map. The landmarks are matched to new observations via locality
instead of a feature descriptor. They propose an extended noise model to improve the esti-
mation of the Mahalanobis distance between landmarks and new observations. Although
this approach does not scale to large environments, they are able to close small loops.

62 Chapter 3. 3D SLAM with an RGB-D Camera

The processing power of modern graphics hardware gave rise to several approaches
that are leveraged by the massive parallelization. KinectFusion [91] was the first of a
series of approaches for surface reconstruction based on a voxel grid containing the trun-
cated signed distance [22] to the surface. The sensor pose relative to the world model
is estimated by ICP variants, which register the global surface with the current measure-
ment. Each measurement is directly fused into the voxel representation. This reduces
the drift as compared to the frame-to-frame comparisons we employ, yet lacks the ca-
pability to recover from accumulating drift by loop closures. Real-time performance is
achieved, but requires high performance graphics hardware. The size of the voxel grid
has cubic influence on the memory usage, so that KinectFusion only applies to small
workspaces. Kintinuous [124] overcomes this limitation by virtually moving the voxel
grid with the current camera pose. The parts that are shifted out of the reconstruction
volume are triangulated to form a mesh. This allows to deal with loop closures by defor-
mation of the mesh [125]. Table 3.1 shows a comparison between the results reported by
Whelan et al. [124] to our approach. Our approach achieves the best result on three of
four sequences, using a real time capable configuration running on the CPU only.

RGB-D SLAM Systems

The first scientifically published SLAM system for Kinect-type RGB-D cameras was
proposed by Henry et al. [55, 56] who use visual features in combination with GICP [110]
to create and optimize a pose graph. Unfortunately neither the software nor the data used
for evaluation have been made publicly available, so that a direct comparison cannot be
carried out.

Meilland and Comport [88] combine voxel representations with the advantages of
keyframes in their RGB-D SLAM approach. They propose to fuse multiple frames into
extended keyframes to avoid the loss of information due to the incomplete overlap of
the field of view, when using regular keyframes. Table 3.1 shows the results reported by
them in comparison to those obtained with our approach. Zeng et al. [130] show that the
memory requirements of the voxel grid can be greatly reduced using an octree to store the
distance values. Hu et al. [59] recently proposed a SLAM system that switches between
bundle adjustment with and without available depth, which makes it more robust to lack
of depth information, e.g., due to distance limitations and sunlight.

Kerl et al. first proposed to optimize a photoconsistency error term to align successive
RGB-D frames [69] for RGB-D odometry. They further proposed a robust approach
to combine the photoconsistency error with an error term based on the dense depth
data [70]. Their approach runs in real-time on a CPU, using the same hardware as in
our experiments. To benefit from loop closures, they augment this visual odometry by
keyframe based visual SLAM with a pose graph. A comparison of this SLAM approach
with ours is shown in Figure 3.16. The results of Kerl et al. are highly accurate, but their

3.7. Related Work 63

Sequence Our Approach Kintinuous Multi-Keyframe Fovis
Real-Time ICP+RGB-D VP

Median ATE
fr1 desk 0.016 m 0.069 m 0.018 m 0.221 m
fr2 desk 0.074 m 0.119 m 0.093 m 0.112 m
fr1 room 0.076 m 0.158 m 0.144 m 0.238 m
fr2 large no loop 0.826 m 0.256 m 0.187 m 0.273 m

Maximum ATE
fr1 desk 0.080 m 0.234 m 0.066 m 0.799 m
fr2 desk 0.111 m 0.362 m 0.116 m 0.217 m
fr1 room 0.124 m 0.421 m 0.339 m 0.508 m
fr2 large no loop 1.574 m 0.878 m 0.317 m 0.897 m

Table 3.1: Comparison of the trajectory error of our approach with the Kintinuous ICP+RGB-D
approach (Whelan et al. [124]), the Fovis Visual Odometry approach (as reported in
[124]) and the multi-keyframe approach using view prediction (Meilland et al. [88]).
The compared approaches are running in real-time. We therefore compare against a
real-time configuration of our approach, which performs at 30 Hz on average. Note
that our approach and Fovis only use the CPU, while the other approaches require a
powerful GPU. Nevertheless, we outperform the other approaches on three of the four
sequences w.r.t. the median. We compare median and maximum ATE here, as these
values are given in the respective publications.

approach fails on the “fr1 floor” sequence, presumably because of their heavy reliance on
the visual odometry which breaks at the short sensor outages in that sequence. Meilland
and Comport [88] propose a GPU based real-time tracking approach, which is also based
on optimization of both photometric and geometric constraints. Their approach is used
to compute a super-resolution map from a sequence of RGB-D frames.

Maier et al. [85] investigated the performance of full bundle adjustment, i.e., including
the landmarks into the graph, with an otherwise similar approach to ours. Further they
show that first optimizing local sub-maps and then aligning these is faster with low
impact on the accuracy. As they present results on our benchmark dataset, we performed
a comparison, which is shown in Figure 3.17. Overall, they achieve an accuracy that
is comparable to our approach, with our approach being faster when using a real-time
configuration. Unfortunately they do not evaluate their system on the more challenging
sequences. The processing times were obtained on comparable hardware: Intel Core i7-
2600 CPU with 3.40 GHz (ours) versus Intel Core i7-3770 CPU with 3.40 GHz (theirs).
No GPU has been used in all cases.

64 Chapter 3. 3D SLAM with an RGB-D Camera

fr1
360

fr1
desk

fr1
desk2

fr1
floor

fr1
plant

fr1
room

fr1
rpy

fr1
teddy

fr1
xyz

fr2
desk

fr3
office

Average

Sequence

0.00

0.02

0.04

0.06

0.08

0.10
AT

E
-R

M
SE

 (m
)

Our Approach
(Real Time) DVSLAM

Figure 3.16: Comparison with the results reported by Kerl et al. [70] on our benchmark dataset.
Their approach obtains better results on these sequences on average, but fails on the
“fr1 floor” dataset (not included in the averaged results).

RGB-D Datasets

Besides our RGB-D benchmark, other researchers have published RGB-D datasets, often
adopting the tools and error metrics of our benchmark, but focusing on different aspects in
the recorded data. Handa et al. [53] created a dataset for evaluation of RGB-D odometry
and surface reconstruction. Since ground truth for the map itself is difficult to obtain, they
create 3d models in simulation and use a raytracing software to create color and depth
data. The sequences are created by using various camera trajectories obtained in the real
world as trajectory for the rendering process. Handa et al. add typical noise to the depth
and color. Unfortunately they do not consider effects that result from a rolling shutter,
asynchronous depth and color images, motion blur, and the lack of accurate timestamps.
They provide ground truth trajectories for eight synthesized sequences, which can be used
with the evaluation tools of our benchmark. They published the ATE-RMSE for several
visual odometry approaches, which allows us to compare them to our RGB-D odometry
(i.e., using the graph optimization backend only to optimize a small graph containing
the poses which were successfully matched). As shown in Figure 3.18, on average our
approach is the most accurate. However, the high error rate for some of the approaches
in the publication of Handa and Whelan et al. [53] does not fit the accuracy reported on
real datasets by Whelan et al. [124]. Therefore, one could argue that the way the data
is synthesized might cause these problems, e.g., by producing highly ambiguous visual
features. Further it is unclear why ICP should become worse when including the color
information (ICP and ICP+RGB-D in Figure 3.18).

3.7. Related Work 65

fr1
360

fr1
desk

fr1
desk2

fr1
plant

fr1
room

fr1
rpy

fr1
teddy

fr1
xyz

fr2
desk

fr3
office

 Average

Sequence

0.00

0.02

0.04

0.06

0.08

0.10

AT
E

-R
M

SE
 (m

)

Our Approach
(Real Time) SBBA Full BA

fr1
360

fr1
desk

fr1
desk2

fr1
plant

fr1
room

fr1
rpy

fr1
teddy

fr1
xyz

fr2
desk

fr3
office

 Average

Sequence

0.00

0.05

0.10

0.15

0.20

Pr
oc

es
si

ng
 ti

m
e

pe
r

fr
am

e
(s

) 0.81 0.52

30Hz

Our Approach
(Real Time) SBBA Full BA

Figure 3.17: Comparison with the results reported by Maier et al. [85] on our benchmark dataset
for full bundle adjustment (Full BA) and their sub-map based bundle adjustment
(SBBA) approach. In real-time configuration our result provides a similar accuracy
to SBBA and Full BA at lower processing times on comparable hardware.

A further dataset that includes RGB-D data was captured at the MIT Stata center [42]
and made available online2. The dataset was captured with the sensors of a Willow Garage
PR2 robot (see Figure 3.6). It contains several long sequences with various combinations
of sensor data, some of them with ground truth. For an 229 m long sequence of this
dataset (“2012-04-06-11-15-29”), consisting of nearly 20.000 frames, we obtained an
ATE-RMSE of 1.65 m at a processing rate of 5.0 Hz.

2http://projects.csail.mit.edu/stata/

http://projects.csail.mit.edu/stata/

66 Chapter 3. 3D SLAM with an RGB-D Camera

living
room 0

living
room 1

living
room 2

living
room 3

office 0 office 1 office 2 office 3 Average

Sequence

0.0

0.1

0.2

0.3

0.4

0.5

AT
E

-R
M

SE
 (m

)
Our Approach (Real Time Odometry)
DVO

ICP
ICP+RGB-D

RGB-D
Fovis

Figure 3.18: Comparison of our approach with the results reported by Handa et al. [53] on their
synthetic benchmark dataset using the RGB-D odometry approaches DVO [69],
Fovis [60], RGB-D [112], ICP as used in KinectFusion [91] and Kintinuous [123],
and its extension ICP+RGB-D [124]. Our approach is configured analogous to the
experiments in Figures 3.16 and 3.17, but without final optimization of the full pose
graph. Since the size of the simulated scenarios are room-sized, we consider an error
of more than 0.5 m as failure.

3.8 Conclusion

In this chapter, we investigated the problem of simultaneous localization and mapping
with an RGB-D sensor. We first developed a state-of-the-art SLAM system that exploits
the sensor’s depth and color information to compute the constraints for a pose graph
using sparse visual flow. Second, we created a benchmark for RGB-D SLAM systems,
that provides datasets with ground truth and metrics to measure the accuracy. We publicly
released the benchmark and the RGB-D SLAM system to allow others to reproduce our
results and provide the community with a method to evaluate and compare algorithms
quantitatively. In continued research, we proposed and evaluated several methods that
improve the basic system with respect to runtime, accuracy and reliability. We increased
the number of successful motion estimates, by exploiting the existing graph structure of
our optimization backend for geodesic neighbor search. On the other hand, we showed
that pruning the edges of the graph based on their statistical error effectively removes
deficient motion estimates and thus improves the final result. We further proposed an
environment measurement model to evaluate the quality of registration results directly in
the SLAM frontend, exploiting the dense depth information. By detecting and rejecting
faulty estimates based on this quality measure and the above graph pruning, our approach
deals robustly with highly challenging scenarios. We performed a detailed experimen-

3.8. Conclusion 67

tal evaluation of the critical components and parameters based on the benchmark, and
characterized the expected error in different types of scenes. We furthermore provided
detailed information about the properties of the RGB-D SLAM system that are critical
for its performance.

Compared to stereo cameras, RGB-D sensing based on projection of structured light
reduces the reliance on texture. However, compared to cameras with fisheye lenses or
parabolic mirrors, their field of view is very limited. In combination with the minimum
and maximum range, this may lead to periods without usable visual features. Our mapping
approach is robust to short sensor outages, but requires overlapping field of views with
common feature observations to connect frames in the graph. In the next chapter we
address this problem by extending our approach to multiple views, as an absence of
features in all views is less likely to occur than for a single view.

Chapter 4

Multiple View RGB-D Perception

Contents
4.1 SLAM with Multiple RGB-D Sensors 71

4.2 A Catadioptric Extension for RGB-D Cameras 73

4.2.1 Design . 75

4.2.2 SLAM with the Catadioptric RGB-D Sensor 77

4.3 Calibration of Multiple RGB-D Sensors via SLAM 81

4.4 Calibration of the Catadioptric RGB-D Sensor 83

4.4.1 Reduction to Three Degrees of Freedom 83

4.4.2 Reduction to Two Degrees of Freedom 86

4.4.3 Experimental Evaluation . 86

4.5 Related Work . 88

4.6 Conclusions . 89

70 Chapter 4. Multiple View RGB-D Perception

The typically restricted field of view of visual sensors often im-
poses limitations on the performance of localization and simultane-
ous localization and mapping (SLAM) approaches. In this chapter,
we investigate the use of multiple RGB-D cameras for mapping
and develop a solution for extrinsic self-calibration of the sensors
via SLAM. Further, we propose to create a catadioptric RGB-D
sensor by combining an RGB-D camera with two planar mirrors.
We let the mirrors split the field of view such that it covers opposite
views, e.g., front and rear view of a mobile robot. For this sensor,
we extend the extrinsic self-calibration to exploit the knowledge
about the mirror arrangement to reduce the degrees of freedom of
the problem. In experiments on real-world data, we demonstrate
that incorporating multiple views yields substantial benefits for the
accuracy of RGB-D SLAM. We evaluate the convergence and ac-
curacy of the self-calibration approach and show the benefits of the
reduced degrees of freedom approach.

· · · · ·

RGB-D sensors based on the projection of structured light have leveraged many robotic
applications. The dense depth information at high frequencies brought indoor perception
to a new level. However, one of the major limitations of RGB-D cameras, particularly
in the context of SLAM, is the small field of view. It is limited not only by the narrow
opening angle, but also by the minimum and maximum range. In many applications it
is therefore desirable to use more than one sensor to increase the observable area. For
example, in RGB-D SLAM with a single sensor, the estimation of the motion becomes
difficult if the robot is too close to obstacles, therefore lacking depth information. On the
other hand, in large empty spaces, such as a hall it may lack reliable depth information
because few things are within the maximum range. Further, indoor environments often
contain areas of high ambiguity in geometry and texture, e.g., only flat monochrome
surfaces with right-angled edges. In such environments, a smaller effective field of view
means a lower probability to perceive salient structures or texture. For handheld SLAM
the human can deal with this problem by taking care to avoid these situations. For an
autonomous robot, however, this is not straightforward, as it does not yet have the required
knowledge about its environment to plan a specialized path. With multiple sensors, the
robot is less prone to such situations. On the downside, multiple sensors come at a cost.
Besides the additional financial cost, also weight and power consumption are multiplied.

However, many robots are already equipped with multiple sensors for safety reasons,
e.g., for dynamic collision avoidance, where the robot is usually required to perceive
the accessibility of its path. If the robot can go forward and backward – or is even

4.1. SLAM with Multiple RGB-D Sensors 71

omnidirectional – this cannot be solved with a single RGB-D sensor. If multiple sensors
are available, it is desirable to incorporate them in the mapping process.

To fuse the observations of multiple sensors, they need to be projected to a common
coordinate system. This requires to determine the relative poses of the sensors, i.e., to cal-
ibrate them extrinsically. This is often a tedious procedure, either approached by manual
measuring or by using common observations of a calibration pattern. The latter procedure
requires an overlapping field of view, which would be an unfortunate configuration for
RGB-D cameras, as the interference of the projected infrared patterns deteriorates the
depth measurements.

In this chapter, we present our work on the subject of multi-view RGB-D perception.
In brief, our contributions are

• an extension of the system presented in Chapter 3 to perform SLAM jointly with
the measurements of two RGB-D cameras and the evaluation of the impact on the
performance.

• A catadioptric extension for RGB-D cameras to split the field of view of a single
camera, attaining similar benefits of using two cameras with only low additional
cost.

• A novel approach to self-calibration of multiple viewpoints of RGB-D cameras via
SLAM, using the egomotion estimation of each sensor and, if available, common
landmark observations.

• The introduction of additional constraints for this self-calibration approach, which
exploit the knowledge about the structure of the catadioptric extension, making the
calibration of the views quicker, more robust and allowing calibration from planar
motion only.

4.1 SLAM with Multiple RGB-D Sensors

Performing localization or SLAM with consumer grade RGB-D cameras as discussed
in Chapter 3 has been a topic of intensive research in recent years [21, 38, 56, 125].
Many approaches are adaptations of algorithms commonly used with stereo cameras or
lidars (laser range scanners). Lidars typically have a horizontal field of view of 180◦

to 360◦ degrees and usually provide accurate depth measurements in a range between
a few centimeters and several dozen meters. In contrast, for the most popular RGB-D
sensors, i.e., the Microsoft Kinect and the Asus Xtion pro live, the distance in which the
sensor provides depth measurements is generally limited to a range of about 0.6 m to
8 m with a rather restricted field of view of 43◦ vertically by 57◦ horizontally. Whereas
for lidars, one can usually assume some meaningful geometric structure to be in the

72 Chapter 4. Multiple View RGB-D Perception

Figure 4.1: Top-view of the environment of the experiment with the trajectory of the robot.

sensor’s field of view (e.g., more than half of the room for a field of view of 180◦), in
the context of RGB-D cameras we often need to deal with (visually and geometrically)
ambiguous structure, e.g., when perceiving only a flat part of a wall or one corner of a
room. Accordingly, an extension of the field of view of RGB-D sensors would be highly
beneficial. The easiest way to achieve this is by using multiple sensors.

We therefore extended the approach discussed in Chapter 3 to investigate the impact of
a second RGB-D Camera. With available extrinsic calibration, this can be achieved in a
straight-forward manner by processing the frames from the cameras in turn. We modified
the match-making algorithm from Section 3.4 such that frames from the other sensors will
not be considered for the n direct predecessors. Instead we include an edge representing
the extrinsic calibration between the respective sensor’s nodes. Because current RGB-D
cameras cannot be synchronized, we increase the uncertainty of the calibration to reflect
the difference in the time stamps.

Experimental Evaluation

To quantify the performance gain from using a second RGB-D sensor in a typical SLAM
application, we mounted two RGB-D cameras back to back on a Pioneer robot and drove
it through an indoor office environment. The environment and the path of the robot are
shown in Figure 4.1. The trajectory of the robot starts and ends in the same position with
opposite bearing, as would be encountered in a fetch-and-carry task. As autonomous

4.2. A Catadioptric Extension for RGB-D Cameras 73

robots usually need to monitor their path, we oriented the sensors to look forward and
backward. While the forward-only field of view of the robot greatly overlaps between
going back and forth, the perspective is substantially different. When using both views,
the features perceived in the first part of the trajectory are seen from a similar perspective
by the respective other sensor on the way back.

We reconstruct the trajectory of the robot offline from a recorded dataset, using the
system presented in Chapter 3, once using only the forward-facing sensor and once using
both. We do not use any further sensing for the trajectory reconstruction. We compare
the respective trajectories with ground truth obtained from 2D Monte-Carlo localization
using a SICK LMS-200 laser scanner. To compute the deviation from the ground truth, we
use the root-mean-square of the absolute trajectory error (ATE-RMSE), as described in
Section 3.2.2. For a trajectory estimate X̂ = {x̂1 . . . x̂n} and the corresponding ground
truthX the ATE-RMSE is defined as

eATE-RMSE(X̂,X) =

√
1

n

∑n

i=1
‖trans(x̂i)− trans(xi)‖2, (4.1)

i.e., the root-mean-square of the Euclidean distances between the corresponding ground
truth and the estimated poses. To make the error metric independent of the coordinate
system in which the trajectories are expressed, the trajectories are aligned such that
the above error is minimal. The correspondences of poses are established using the
timestamps from the sensor image and the range scan.

The robot’s path is about 18 m long. The translational root mean squared error (ATE-
RMSE) using only the front-facing camera for SLAM is 0.209 m. Incorporating addi-
tionally the information from the back-facing sensor, the error with respect to the ground
truth is only 0.070 m, a substantial reduction of approximately two thirds. The respective
trajectories are visualized in Figure 4.2. This result strongly suggests the use of multiple
sensors, where possible.

4.2 A Catadioptric Extension for RGB-D Cameras

As demonstrated in Section 4.1, a substantial improvement can be achieved by the use
of multiple sensors. This, however, comes with the inherent increase of weight, power
consumption and financial costs. In this section, we propose a novel catadioptric setup
for Kinect-style RGB-D cameras that is of low cost (less than 15AC), and requires nei-
ther significant computational resources nor higher power consumption and substantially
relaxes the limitations from the small field of view.

Catadioptric sensors have been extensively used in the robotics and computer vision
community for localization, visual odometry and SLAM [99]. Various shapes of mir-
rors have been used to increase the field of view, including parabolic, hyperbolic and

74 Chapter 4. Multiple View RGB-D Perception

0 1 2 3 4 5 6
x [m]

0

1

2

3

4

5

y
[m

]

RMS-ATE: 0.209 m

Difference

Ground Truth

Single RGB-D Sensor

0 1 2 3 4 5 6
x [m]

0

1

2

3

4

5

y
[m

]

RMS-ATE: 0.070 m

Difference

Ground Truth

Two RGB-D Sensors

Figure 4.2: Comparison of the trajectory reconstruction of RGB-D SLAM using a single front-
facing sensor (top) with the use of two sensors facing front and back (bottom). The
additional information reduces the error by 66.5 %.

4.2. A Catadioptric Extension for RGB-D Cameras 75

Mirro
r

Virtual
Viewpoint

Real Viewpoint

Optical
Axis

"Front"
Field of

View

"up" vector

(a) Creation of a virtual viewpoint. For clar-
ity, only one mirror and the respective
projection of the viewpoint is shown.

Virtual
Viewpoint
Front View

Real
Viewpoint

Front View
"up" vector

Rear View
"up" vector

Virtual
Viewpoint
Rear View

O
pt

ic
al

A
xi

s

Rear
FOV

Front
FOV

(b) For two planar mirrors, the focal point is
projected to two virtual viewpoints. The
“up” vector needs to be flipped for the
lower part of the original image.

Figure 4.3: Illustration of the concept of the virtual viewpoints.

spherical [128]. Also, mirrors have been used to capture stereo images with a single cam-
era [47]. To the best of our knowledge, however, we are the first to propose a combination
of RGB-D cameras with mirrors.

4.2.1 Design

The most influential design choice of a catadioptric sensor is the shape of the mirror(s).
While omnidirectional (non-RGB-D) cameras with parabolic mirror have been proven

beneficial in many applications [128], the concept cannot be easily transferred to RGB-D
cameras. The main benefits of parabolic mirrors are the 360◦ field of view perpendicular
to the optical axis and the good compromise between detail in the close range and a big
vertical field of view (if the optical axis is vertical).

An RGB-D sensor consists of an infrared projector, an infrared camera and a color
camera. The infrared camera perceives the projected pattern and computes dense distance
values from the disparity of the projected and perceived patterns. Due to the alignment of
the infrared projector and camera, the disparity can be efficiently computed, by searching
for a projected point in a small horizontal stretch of the infrared image. Using parabolic
mirrors would come with many difficulties. Most importantly, it would require three mir-
rors. Hence, some parts of the field of view would not be visible to all optical devices to
due occlusion by the neighboring mirrors. Measures to avoid crosstalk through the reflec-
tion of the neighboring mirrors would be required. Further, it would be computationally
more expensive to compute the disparity image, as one would need to compensate for the
curvature introduced by the mirrors of both infrared devices. In contrast, when using a
planar mirror, the mode of operation of the camera is not affected. We therefore propose

76 Chapter 4. Multiple View RGB-D Perception

Figure 4.4: The assembled catadioptric sensor using an Asus Xtion PRO Live, two mirrors and
a mount made of transparent acrylic sheet. Figure 4.5 depicts the CAD model of the
mirror mount.

to split the field of view of the camera, with two planar mirrors, creating two virtual
viewpoints roughly opposite to each other. Figures 4.3a and 4.3b illustrate the formation
of the virtual viewpoints. Further splits might be beneficial in specific scenarios to allow
the robot to measure other aspects of its environment, e.g., floor or ceiling. Aligning the
edge between the mirrors with the horizontal axis of the RGB-D camera minimizes the
loss of depth information such that almost the full sensor resolution can be used. Setup
this way, only the visibility of the edge where the mirrors are linked will negatively affect
the image. In our experiments we created two field of views of about 20◦ vertically by
57◦ horizontally. Pointed in opposite directions, the two field of views are particularly
beneficial for robots moving in the plane, as the sensor data gained by the horizontally
extended perception yields much more information relevant to the planar motion than the
sacrificed perception in the vertical direction. Figure 4.4 shows the prototype of our pro-
posed catadioptric sensor. However, the proposed sensor extension can be also beneficial
for robots moving with more degrees of freedom as, e.g., the ambiguity between transla-
tion and rotation is alleviated. As a further advantage of the proposed setup, the intrinsic
calibration of the device is not changed, so that one can apply the standard procedure or
use the factory default settings. We choose the tilt of the two mirrors such that the centers
of the two half fields of view are roughly horizontal. Note that ideal planar mirrors do
not introduce any distortion to the depth perception principle, regardless of their pose.

The choice of the distance between camera and mirrors is a trade-off between loss of
image area and the size of the device. The closer we mount the mirrors to the camera, the
larger will be the unusable projection of the gap between the mirrors be in the images. If
they are further away, the mirrors need to be larger, and the size and weight of the overall
device grows. In our implementation the mirrors are about 2 cm in front of the camera

4.2. A Catadioptric Extension for RGB-D Cameras 77

2x 4x

Figure 4.5: The CAD model of the mirror mount for an “ASUS Xtion PRO Live”. The model
is available online1. The structure can easily be created with a laser cutter from a
30 cm × 30 cm × 0.5 cm sheet of acrylic glass.

and we crop out a rectangle with a height of 50 pixels from the center of the image. Note
that our goal here is a setup that is generally applicable. We therefore do not address, e.g.,
the possible reduction of the minimum sensing distance with respect to the center of the
robot. While this could easily be achieved by increasing the distance between mirrors and
camera, it would come at the cost of equally reduced maximum range and, as mentioned
above, a bigger size of the device. To hold the mirrors and the sensor, we designed
a multi-component structure which we can easily assemble by manually plugging the
individual components together. Figure 4.5 shows the CAD model of the structure, which
we used to cut the pieces from a 5 mm thick sheet of polymethylmethacrylate (PMMA)
in a laser cutter. While it would be possible to use coated PMMA for the mirrors as well,
we recommend to use glass mirrors. Due to the great planarity and rigidity of glass no
noticeable distortions are introduced to the images.

To readily offer the developed device to the research community, we publish the used
CAD model1.

4.2.2 SLAM with the Catadioptric RGB-D Sensor

To use the catadioptric sensor for RGB-D SLAM, we can use the exact same procedure
as described in Section 4.1. However, the two virtual views originate from the same
sensor image, which means they are synchronized (except for a minor difference due to
the rolling shutter). This allows us to use the extrinsic calibration to project the visual
features of both views into a common local coordinate system. This has the advantage
that more matches are available for each transformation estimation. Particularly, having

1see http://ais.informatik.uni-freiburg.de/projects/datasets/catadioptric-rgbd/

http://ais.informatik.uni-freiburg.de/projects/datasets/catadioptric-rgbd/

78 Chapter 4. Multiple View RGB-D Perception

Figure 4.6: The RGB-D SLAM software processing input from the catadioptric sensor. Top: 3D
model created from both views using the estimated calibration. Bottom rows: color
and depth input for the two views and the respective visual features.

matches on both sides of the robot makes the difference between translation and rotation
less ambiguous (when the robot translates parallel to the image plane, the features on
both sides will move towards the same direction; if it revolves, they will move to opposite
directions). Figure 4.6 shows the adapted software processing the split views.

To quantify the performance gain from using the proposed sensor extension, and com-
pare it to the results of Section 4.1, we use the same experimental setup as before. We
compare the trajectory obtained from our RGB-D SLAM system with data from the cata-
dioptric sensor to ground truth, which we obtain from our pioneer robot. The robot is
driving through the same indoor environment shown in Figure 4.1 and records the ground
truth from 2D Monte-Carlo localization using the SICK LMS-200 laser scanner. Fig-
ure 4.7 depicts a Pioneer robot with the proposed catadioptric sensor and a map created
from the data obtained from the catadioptric RGB-D sensor.

4.2. A Catadioptric Extension for RGB-D Cameras 79

Figure 4.7: A resulting map and the trajectory estimate from our evaluation experiment, where
we show that the proposed catadioptric sensor substantially improves the accuracy in
a robot SLAM task. Note that only the RGB-D data was used to generate the map,
while the laser range scanner and the odometry were used to obtain the ground truth.

To compute the deviation from the ground truth, we use the root-mean-square of the
absolute trajectory error (ATE-RMSE), as described in Sections 3.2.2 and 4.1. We also
compare against the results from Section 4.1. Ideally, we would compare the accuracy of
the SLAM trajectory estimate from the same motion. However, RGB-D cameras actively
project an infrared pattern which can lead to a crosstalk effect between the sensors.
This effect has been shown to substantially deteriorate the measurements, particularly
if the sensors are placed in close proximity [86]. We therefore refrain from running the
catadioptric setup at the same time as the two regular sensors.

To guarantee comparability, we use the highly accurate laser-based trajectory following
approach by Sprunk et al. [111], for which we teach a trajectory and let the robot repeat
it, once with the two regular RGB-D cameras and once with the catadioptric device. For
ground truth, we used the laser scanner to create a 2D map in the “teach” run and use the
laser-based localization result for comparison in each repetition run. In our experiments,
the deviation of the mobile robot from the taught trajectory was always below 0.02 m and
2.5◦. Therefore, the input to both sensor setups is suited for an unbiased comparison. The

80 Chapter 4. Multiple View RGB-D Perception

0 1 2 3 4 5 6
x [m]

0

1

2

3

4

5

y
[m

]

RMS-ATE: 0.209 m

Difference

Ground Truth

Single RGB-D Sensor

0 1 2 3 4 5 6
x [m]

0

1

2

3

4

5

y
[m

]

RMS-ATE: 0.070 m

Difference

Ground Truth

Two RGB-D Sensors

0 1 2 3 4 5 6
x [m]

0

1

2

3

4

5

y
[m

]

RMS-ATE: 0.076 m

Difference

Ground Truth

Catadioptric RGB-D Sensor

Figure 4.8: For a trajectory of about 18 m the ATE-RMSE obtained when using the proposed
catadioptric RGB-D sensor (bottom panel) with respect to the ground truth is only
0.076 m. For comparison, in our earlier experiment (top panels), using one and two
regular RGB-D cameras, we obtained 0.209 m and 0.070 m respectively. A larger
version of the top panels can be found in Figure 4.2.

4.3. Calibration of Multiple RGB-D Sensors via SLAM 81

trajectory and the mapped environment are depicted in Figure 4.7. The ATE-RMSE for
the catadioptric sensor is 0.076 m. In comparison, the corresponding error for mapping
with the regular sensor, is 0.209 m. Thus the error is reduced by 64 % , which is almost
as good as the result we obtained using two regular RGB-D cameras, where we obtained
an error of 0.070 m. Figure 4.8 shows the trajectory from the respective RGB-D SLAM
results in comparison with the ground truth.

4.3 Calibration of Multiple RGB-D Sensors via SLAM

To combine the perception of the individual viewpoints in the previous sections, we relied
on the availability of their extrinsic calibration. In this section we present an approach to
incorporate the extrinsic calibration into the graph optimization backend of the SLAM
framework, such that it can be carried out during mapping – even online, if desired. In
contrast to pattern-based calibration, our approach does not require an overlapping field
of view or special tools. Our approach is able to perform a full calibration only from
the egomotion estimates of the sensors. Additionally, common observations, e.g., after
turning the sensors, are incorporated to constrain the calibration parameters. The backend,
as described in Section 3.1.3, performs non-linear least-squares to estimate the maximum
likelihood configuration of the sensor poses. Let us recapture the form of the least-squares
problem:

F (X) =
∑
ij∈C

e(xi,xj, zij)
> Ωij e(xi,xj, zij), (4.2)

x∗ = argmin
x

F (x). (4.3)

As in Section 3.1.3,X is the trajectory, representing the individual poses xi of the pose
graph and C is the set of constraints (edges) in the graph. The error function e(·) computes
the difference between an expected measurement given the current state vector and a real
measurement zij. The error is 0 when xi and xj perfectly explain the measurement.
Finally, the information matrix Ωij models the uncertainty in the error.

The measurements zij describe relative transformations between the camera poses
at certain points in time. The transformation may relate subsequent poses, i.e., visual
odometry, or span over large time intervals (loop closures).

We can elegantly include the unknown extrinsic calibration into this formulation. First,
by matching frames from different sensors. When one camera observes a part of the en-
vironment that was previously seen in another camera, the above error function involves
two different cameras and will be able to estimate their relative state accordingly, assum-
ing uninterrupted motion estimates between the respective times of observation. Further,
we define a second set of error functions that represents the calibration parameters cor-

82 Chapter 4. Multiple View RGB-D Perception

r1

r2

φ
r2

d

P1

P2

Figure 4.9: When rotating the sensors P1 and P2 jointly about the depicted axis, the degrees of
freedom d and ψ (shown in magenta) are not observable from this motion.

responding to the setup of our mirrors. Without any further assumptions the calibration
consists of estimating the offset c ∈ SE(3) between the two cameras. Without loss of
generality let us assume that the state vector contains ordered pairs of poses for the cam-
era in each time step, i.e., x = 〈x[1]

1 ,x
[2]
1 , . . . ,x

[1]
t ,x

[2]
t 〉, where x[j] represents the poses

of the camera j. The error for the offset parameter c is given by

ei(x, c) = x
[2]
i 	

(
x
[1]
i ⊕ c

)
, (4.4)

where ⊕ corresponds to the motion composition and 	 to its inverse.

Given these two types of error functions, the joint estimation of the trajectory and the
calibration is done by solving

argmin
x,c

(∑
ij∈C

e(xi,xj, zij)
> Ωij e(xi,xj, zij) +

∑
t

et(x, c)
> Ωt et(x, c)

)
. (4.5)

Note that while we only consider two cameras, the approach itself is able to handle
multiple cameras. This latter type of constraint allows us to estimate the calibration from
the egomotion estimate of the individual sensors. Intuitively, if two cameras are rigidly
attached and perform a translational motion, we know that the motion vectors need to be
parallel. This constrains the angle of the optical axes of the cameras to the motion vector,
but not around it. The translational offset between the sensors is not observable from such
a motion. If the sensors jointly rotate about an axis, we can observe the angle to the axis
and the offset orthogonal to it, but not their relative rotation about the axis or offset along
it. See Figure 4.9 for an illustration. To achieve full calibration of all degrees of freedom
without loop closures across sensors, the sensors therefore need to be rotated about at least
two axes. We evaluated the calibration from both types of constraints individually using
two Asus Xtion Pro Live sensors mounted back-to-back, with the second one flipped
upside down. We pivoted the sensors on a tripod in the middle of a small office and used

4.4. Calibration of the Catadioptric RGB-D Sensor 83

SLAM to determine the calibration parameters. The chosen arrangement of the sensors
allows to accurately align the lenses, up to the variance in fabrication. The expected
extrinsic offsets are zero, except in the rotation about the cameras’ horizontal axis (the
yaw angle in the plot), which should be 180◦, and their relative translation along the
optical axis (the y axis in the plot), which should be about -2 cm (we could not measure
the exact offset between the focal points manually). The convergence of the individual
degrees of freedom is shown in Figure 4.10. Note how the rotation about the roll (on
the left side) is not sufficient to constrain the rotational calibration about that axis. As
visible in the center column though, the constraints of the egomotion allow to effectively
calibrate the sensors if the sensor rotates about more than one axis. In the experiment,
we used the factory settings for the intrinsic calibration. However, we found that in some
Xtion Pro devices the scaling of the depth has a systematic bias of up to 10 %. Therefore
we performed a quick calibration of the depth scaling.

4.4 Calibration of the Catadioptric RGB-D Sensor

In this section we discuss the extrinsic calibration of the presented catadioptric RGB-D
sensor. In principle, the calibration procedure from Section 4.3 can be directly applied
to the input from the catadioptric sensor, to estimate the position of the two virtual view-
points created by the mirrors. However, due to special properties of the proposed catadiop-
tric device, the offset between the virtual camera viewpoints is constrained approximately
to a manifold of less than six degrees of freedom. We can exploit this knowledge to reduce
the degrees of freedom, which improves the convergence properties of the calibration.

Regarding the intrinsic calibration, we assume no additional distortion from the mirrors,
due to the small size of the used mirrors and the great planarity and rigidity of glass. In
our experiments we found that this assumption holds in practice. Therefore, the intrinsic
calibration procedure does not differ from that of a regular RGB-D camera.

4.4.1 Reduction to Three Degrees of Freedom

As stated above, we mount the mirrors and the RGB-D camera such that the edge between
the mirrors is aligned with the transversal axis (the axis going through the projector and
the two lenses). When the mirror mount is produced with a laser cutter, the error in
this alignment is negligible for our practical purpose. If we therefore assume that the
edge between the mirrors is indeed parallel to the transversal axis of the camera, we
obtain three degrees of freedom for our setup. The left side of Figure 4.11 illustrates the
remaining degrees of freedom of this configuration. Under these assumptions the roll and
yaw angles of the virtual viewpoints are identical. Further, the offset in the transversal
axis must be zero. The remaining degrees of freedom are the relative pitch θ and the

84 Chapter 4. Multiple View RGB-D Perception

−0.1

0

0.1

x
[m

]
Loop Closure

−0.1

0

0.1

y
[m

]

−0.1

0

0.1

z
[m

]

−5

0

5

ro
ll
[d
eg

]

−5

0

5

p
it
ch

[d
eg

]

175

180

185

y
a
w

[d
eg

]

0 50 100 150

−100

0

100

Frame Index

[d
eg

]

Sensor Orientation: Roll Pitch Yaw

Egomotion Only

0 50 100
Frame Index

Egomotion + Loop

0 100 200
Frame Index

Figure 4.10: Convergence of the extrinsic calibration of two RGB-D sensors mounted back to
back. The bottom row depicts the orientation of the camera facing to the front during
the recorded motion. The rows above show the components of the computed relative
transformation between the viewpoints. Left: Rotation only about the vertical axis
(roll), with a loop closure between the viewpoints around frame 50. Center: Small
rotation of the device around all axes, without loop closure. Right: Unconstrained
motion with loop closures.

4.4. Calibration of the Catadioptric RGB-D Sensor 85

x

y
r

x' y'

r'

α

α'

P

P'

P*

θ

Mirror'

M
irr
or

x

y
r

αP

r

α'

x' y'
P'

P*

θ

Figure 4.11: Sketch of the cross sections of the proposed catadioptric extension. P ∗ depicts the
position of the real focal point, while P and P ′ depict the virtual focal points as
projected by the two mirrors. Left: Assuming the intersection of the mirror planes
to be parallel to the image plane (both orthogonal to the illustration) results in a dis-
placement with three degrees of freedom (x′, y′, θ′) between the virtual viewpoints.
Right: Additionally assuming the edge between the mirrors to intersect the optical
axis of the camera reduces the transformation between the virtual viewpoints to the
two deg. of freedom r and θ.

translational offset b ∈ R2. Thus, we obtain 3DOFc = 〈b, θ〉 which we can transform to
SE(3) as follows:

SE(3)f3DOF(3DOFc) =

(
Rx(θ) (0, b)>

0 1

)
. (4.6)

The result of this conversion recovers the parameter c in its original space and can directly
be plugged into Equation 4.5 to estimate the calibration.

This calibration method has the advantage that it is more robust to small variation in
the placement of the camera with respect to the mirrors. The method even enables us
to fully calibrate the virtual viewpoints with planar motions (which is impossible for
two regular cameras) under the stated assumption, if we use the rotation to constrain
the translational degrees of freedom and a translation to constrain the rotational offset.
However, this means we would need to rotate about the axis along which the translation
is known, which is the transversal axis - and therefore need to mount the device such
that the wide aperture angle is vertical. Unfortunately, in a planar SLAM application
using this configuration for online self-calibration would reduce the horizontal field of
view by more than 62.5 %. Therefore the overlap of consecutive measurements would be
substantially reduced when the robot rotates.

86 Chapter 4. Multiple View RGB-D Perception

4.4.2 Reduction to Two Degrees of Freedom

Let us now assume that the intersection of the mirror planes is parallel to the transversal
axis and it intersects with the optical axis of the projector and the lenses. We then obtain
only two degrees of freedom for the virtual viewpoints, namely r and θ. See the right
side of Figure 4.11 for an illustration of the remaining degrees of freedom.

Let 2DOFc = 〈r, θ〉 be the two dimensional parameter. We can convert this to a 4 × 4

transformation matrix ∈ SE(3) as follows:

SE(3)f2DOF(2DOFc) =

(
Rx(θ) t

0 1

)
, (4.7)

where Rx(θ) corresponds to a 3× 3 rotation matrix that represents a rotation by θ around
the x-axis and t = (r − r cos(θ), r sin(θ), 0)>. Again, the result of Equation 4.7 can be
directly considered in Equation 4.5 to perform the calibration.

Under the assumptions stated above, these two parameters can be determined from
planar motion only, for any placement of the sensor, as the introduced constraints allow
the computation of the unobserved degrees of freedom.

4.4.3 Experimental Evaluation

As in Section 4.3, there are two particularly interesting cases in the calibration of the
proposed sensor. First, we will examine the convergence using egomotion alone. Second,
we will evaluate the impact of a loop closure between the two virtual viewpoints. Ad-
ditionally, there is a third case, interesting in particular for robots moving in the plane:
the convergence when restricting the sensor to a planar motion. For the evaluation of
the convergence, we recorded data while rotating the sensor about the optical axis, the
transversal axis and the “up” vector of the real camera. Figure 4.12 shows the convergence
of the individual components of the displacement. The initial guess for the optimization
is the identity, i.e., both viewpoints are at the same place. For the methods with restricted
degrees of freedom, we compute the shown displacement components as described in
Section 4.4. As expected, on the left column we can see that only the two degrees of
freedom calibration method is capable to compute a stable estimate for the displacement
for a planar motion without loop closure (before frame 50). The three degrees of freedom
calibration method does not converge, because the camera would need to rotate around
the transversal axis. However, as discussed in Section 4.4, this would be an unfavorable
configuration for a SLAM setting with a wheeled robot moving in the plane.

The loop closure between the virtual viewpoints at frame 50 introduces sufficient
constraints on all degrees of freedom. For rotational motion about more than one axis
we observe quick convergence for all methods, with slightly less stable estimates for the

4.4. Calibration of the Catadioptric RGB-D Sensor 87

−0.5

0

0.5

x
[m

]

Planar motion and loop closure

2 DOF 3 DOF 6 DOF

−0.5

0

0.5

y
[m

]

−0.5

0

0.5

z
[m

]

130

140

150

ro
ll
[d
eg

]

−5

0

5

p
it
ch

[d
eg

]

−5

0

5

y
a
w

[d
eg

]

0 50 100

−200

0

200

Frame Index

[d
eg

]

Sensor Orientation: Roll Pitch Yaw

3-axis rotations, egomotion only

0 50 100 150
Frame Index

Figure 4.12: Convergence of the calibration parameters for the proposed methods. The bottom
row depicts the orientation of the first virtual viewpoint during the recorded mo-
tion. The rows above show the components of the computed relative transformation
between the virtual viewpoints. Left: Rotation only about the vertical axis, with a
loop closure between the viewpoints around frame 50. Right: Rotation of the device
around all axes, without loop closure.

88 Chapter 4. Multiple View RGB-D Perception

methods with higher degrees of freedom. The estimated roll (the angle between the virtual
cameras) corresponds well to the manually measured angle between the mirrors. Since the
location of the focal point of the RGB-D camera is affected by the geometry of the lens
and also inside the housing of the camera, we are only able to obtain a rough estimate of
the translational components manually. The estimated translation of the virtual cameras
is in line with what we expect given the approximate manual measurement. Furthermore,
a visual inspection of the point cloud data of the catadioptric extension revealed the
accuracy of the range data, for example, both virtual cameras observe the ground plane at
the expected location and orientation. Using the parameters from the different calibration
methods in the experimental setting from Section 4.2.2 showed no substantial impact on
the trajectory error. This indicates that the remaining error in the extrinsic calibration of
the views is negligible in SLAM compared to other sources of error.

4.5 Related Work

Transforming the measurements of multiple sensors into a common coordinate frame is
called extrinsic calibration. This is often equivalent to the estimation of the relative poses
of the sensors. A known extrinsic calibration, for example, allows us to transform the
motion of one sensor into the motion of the other sensor. In principle, a device can be
calibrated by precise manufacturing according to a model. For example, if the proposed
catadioptric device is produced using the CAD model and a “perfect” laser cutter, the
relative geometry of the mirrors is precisely known and can be used to compute the angu-
lar offset between the two virtual camera viewpoints. In practice, however, the extrinsic
calibration often needs to be estimated. In the last decades several approaches for online
calibration of range sensors and cameras [79, 80, 89, 96, 109] and multi-camera systems
[14] have been proposed. Roy and Thrun [105] and Scaramuzza [109] proposed meth-
ods for online self-calibration of the kinematic model parameters for the odometry of a
mobile robot using the onboard sensor. Kümmerle et al. [78] showed that the calibration
of odometry and the according kinematic model parameters to an onboard sensor can be
included in the graph optimization framework. Zienkiewicz et al. [132] automatically cal-
ibrate the position of the camera from visual odometry. Given the trajectory of a vehicle,
Maddern et al. [84] perform an extrinsic calibration of LIDAR sensors by optimizing the
Rényi Quadratic Entropy of the point cloud as the robot traverses the environment.

Brookshire and Teller presented an unsupervised approach that only requires ego-
motion estimates for calibrating the offset between range sensors either in 2D [11] or
3D [12]. To determine the extrinsic calibration of two (or more) cameras with an uncon-
strained rigid motion, we need to constrain all six degrees of freedom by appropriate
motions. In their analysis, Brookshire and Teller [12] find that rotational motion around
at least two different axes is required to obtain the required constraints. The calibration

4.6. Conclusions 89

procedures described in this chapter exploit both the egomotion and common observa-
tions to estimate the calibration parameters. Analogously to Kümmerle et al. [78] we
incorporate these information sources elegantly as constraints in the graph optimization
backend of our SLAM approach.

The calibration of the measurements of an individual sensor is called intrinsic cali-
bration and concerns parameters that govern the image creation, i.e., focal length, prin-
cipal point, and distortion model parameters. For RGB cameras, there are well-known
techniques from the field of computer vision for estimating these parameters [54]. For
an RGB-D camera we need to perform the intrinsic calibration for the color camera,
the infrared camera, and the infrared projector. To this end, Herrera et al. [57] use a
checkerboard to calibrate the intrinsics of such a camera. Recently, Teichman et al. [118]
presented an approach to calibrate the depth-measurements of an RGB-D camera given
a SLAM estimate.

4.6 Conclusions

In this chapter, we extended the mapping approach of Chapter 3 to multiple viewpoints. In
a real-world experiment we found that the addition of a second RGB-D sensor can result
in substantial benefits for the reconstruction accuracy. We presented a novel catadioptric
extension to RGB-D cameras by using two planar mirrors to split the field of view such
that it covers both front and rear view. In further experiments we demonstrated that this
catadioptric extension yields similar benefits to a second sensor, at much lower cost.

We furthermore devised an approach for the extrinsic calibration of multiple viewpoints
via SLAM, by introducing constraints for the estimation of the calibration parameters
into the graph optimization backend. Further, we show that we can exploit the knowledge
about the structure of the catadioptric sensor to introduce additional constraints that
reduce the degrees of freedom of the estimation problem. Besides better convergence,
this allows for full calibration of the viewpoints from planar motion, e.g., during operation
of a wheeled robot.

Chapter 5

Interactive Perception and
Manipulation of Doors

Contents
5.1 Articulated Object Dynamics . 95

5.1.1 Rotational Motion . 95

5.1.2 Linear Motion . 97

5.2 Perception of Doors with a Depth Sensor 97

5.2.1 Estimating the Door State 98

5.2.2 Estimating the Hinge Position 98

5.2.3 Learning the Dynamics . 100

5.3 Interactive Learning of the Dynamics from Tactile Perception . . 104

5.4 Experimental Evaluation . 106

5.4.1 Experimental Setup . 106

5.4.2 Learning from Human Demonstration 108

5.4.3 Interactive Experimentation 109

5.5 Related Work . 110

5.5.1 Perception of Doors . 110

5.5.2 Manipulation of Doors . 111

5.6 Conclusion . 112

92 Chapter 5. Interactive Perception and Manipulation of Doors

For a robot to navigate a typical indoor environment, opening of
doors is a fundamental skill. Current state-of-the-art approaches
for robotic door opening rely on a fixed grasp of the door handle.
The grasp is required because these approaches are not aware of the
dynamics of the door and therefore cannot predict what happens
when the door is released in motion. In contrast, humans use prior
knowledge and tactile perception to judge a door’s dynamics. This
allows humans to push or pull the door with only a point contact
and release the door for switching the manipulating hand or chang-
ing the contact point. Inspired by these skills, we present a novel
approach to learn a model of the dynamics of a door from observa-
tions with a depth sensor. The learned model enables the realization
of dynamic door-opening strategies and reduces the complexity of
the door opening task. These strategies reduce the degrees of free-
dom required of the manipulator and facilitate motion planning, as
compared to approaches maintaining a fixed grasp. Additionally,
execution is faster, because the robot merely needs to push the door
long enough to achieve a combination of position and speed for
which the door will stop at the desired state. Using our approach,
the model of the dynamics can be learned from observing a human
teacher or by interactive experimentation. We further present an
approach to estimate the dynamics of an unknown door within the
first interaction using tactile perception. We demonstrate the ad-
vantages in experiments on a real robot, where the robot precisely
swings a door open to a desired opening angle.

· · · · ·

In the previous chapters we investigated how a mobile robot operating in indoor en-
vironments can reliably create a map, e.g., as a basis for navigation. As most buildings
are sectioned into rooms, which are separated by doors, opening doors is a fundamental
skill to map and navigate in such environments. Current state-of-the-art approaches for
robotic door opening typically use a gripper to obtain a firm grasp of the door handle to
maintain control over the door while unlatching and opening it [13, 16, 67, 98]. For hu-
mans, however, there is a variety of ways to open a door, which we unconsciously choose
and execute depending on the situation. For latched doors, we first need to turn a knob
or handle. In the following opening motion, though, we generally do not maintain a firm
grasp on the handle, as that would restrict our motion when passing through the doorway.

93

Figure 5.1: Execution of a door swing to 60◦. Left: The robot starts pushing the closed door.
Center: The robot releases the door when it predicts the momentum to be sufficient
to reach the target state. Right: The final state of the door is very close to the marked
target state. See Table 5.1 for quantitative results.

As we perceive the dynamics of the door in the course of opening, we can predict its
trajectory when released. This ability makes us highly flexible during the execution. For
instance, we can release the moving door as soon as its kinetic energy suffices to reach
the desired state. Further, it allows us to dynamically switch the contact points and even
the manipulating hand without interruption.

The aim of the work presented in this chapter is to advance robotic manipulation of
doors towards the described flexibility by incorporating information from novel percep-
tion methods. More specifically, we want to learn a model of the dynamics of a door from
perception and let the robot use this information during manipulation. This is in contrast
to current state-of-the-art approaches to robotic door opening, which do not make explicit
use of knowledge of the dynamics of the manipulated doors. Most approaches assume
quasi-static motion, i.e., slow enough that inertial forces are negligible. This assumption
substantially reduces the possible execution speed and the door needs to be released at
rest. As a further consequence, the end effector needs to be in contact until the desired
door state is reached. Therefore door opening with a fixed grasp is a challenging prob-
lem, as it requires a large dexterous workspace and requires high-dimensional motion
planning, particularly when the base needs to be moved. In practice, this makes state-of-
the-art approaches only feasible for robots with high reachability and many degrees of
freedom.

In our experiments, we show that the learned model of the dynamics of the door enables
a door manipulation approach in which the robot accelerates the door with its end effector
exactly as long as required to swing it to a desired angle. This strategy represents the
extreme case of the ability to release the door before it comes to rest. It therefore serves
well as a showcase of the achievable accuracy of the predictions. Figure 5.1 shows an
experiment where the robot executes a door swing to an opening angle of 60◦. This

94 Chapter 5. Interactive Perception and Manipulation of Doors

Learned from
depth perceptionFriction

Moment of Inertia

Kinematics

 Deceleration Profile
(After Release)

?

Demonstration

Initial Interaction
Learned from
force/torque

sensing

Improvement by Interaction

Learned Model

Figure 5.2: The proposed methods for learning the aspects of the dynamics model of a door allow
the robot to learn from demonstration and to interactively learn by experimentation.

approach is applicable even on robots with few joints and limited reachability.
In the remainder of the chapter, we present our work on the perception and manipula-

tion of doors in Detail. Our main contributions are as follows.

• We present a novel approach to learn the kinematic model of a door from obser-
vation with a depth sensor. The approach exhibits a quick approximate conver-
gence, such that the kinematic model can be effectively used after observing the
moving door only for a few degrees.

• We present an approach to learn a model of the dynamics of a door from sensor
observations that allows to make accurate predictions of the door’s dynamic be-
havior. The model can be used during the manipulation to predict the motion of the
object at any time. Because the model captures the physical properties of the door,
it generalizes over different starting conditions and desired stopping positions.

• We further propose an approach to let the robot interactively bootstrap the
model during the first opening of an unknown door using tactile perception.

• We integrated the proposed perception and manipulation approaches on a real robot
and experimentally evaluate the resulting manipulation skills in several door
opening tasks. We demonstrate that the learned model of the dynamics can be used
to open a door quickly with accurate results.

An overview of the proposed approaches is shown in Figure 5.2. In the following Section
we will shortly recapture the physics of a moving door. In Section 5.2 we describe how

5.1. Articulated Object Dynamics 95

the robot learns the dynamics of the door from depth perception. Section 5.3 describes
an approach to quickly obtain an initial estimate of the dynamics using tactile perception.
Our experiments with a real robot are detailed in Section 5.4. In Section 5.5 we discuss
related work, followed by a conclusion in Section 5.6

5.1 Articulated Object Dynamics

To predict the effects of the robot’s actions on an articulated object we need to learn
a model of the dynamic behavior of the manipulated object. In this section we will
briefly review the physics on which the model is based and show how to efficiently learn
the parameters for our physical model. For comprehensibility, we will concentrate on
the physics of hinged doors at first, discussing the differences to the conceptually very
similar model for sliding mechanisms in Section 5.1.2.

5.1.1 Rotational Motion

To predict the dynamic behavior of a door from its physical properties, assuming the
standard model of friction, it is sufficient to describe the door by its moment of inertia I
and the kinetic friction τf , which describes the resisting force due to friction within the
door hinges when the door is moving.

According to the law of conservation of energy, assuming the friction torque is constant
and neglecting other effects than friction, the reduction in rotational kinetic energy needs
to be equal to the work of friction, i.e.,

1
2
I (ω2

t − ω2
t′) = τf (θt − θt′), (5.1)

where ωt is the angular velocity at time t and θt is the corresponding opening angle. Note
that the direction of friction forces is always opposite to the motion, i.e., τf always has
the opposite sign of the current velocity ω. Given the angular velocity ω, we can compute
the stopping distance ∆θ = θt − θt′ by setting ωt′ to zero,

∆θ =
Iωt

2

2τf
(5.2)

This allows us to determine the position to release the door (i.e., stop accelerating it, if
we do not maintain a grasp) during manipulation such that the door reaches the desired
angle. Vice versa, we determine the required velocity at a given release angle θ0 in order

96 Chapter 5. Interactive Perception and Manipulation of Doors

0.0 0.5 1.0 1.5 2.0 2.5
Door Angle θ (rad)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Physical Quantities of a Released Door

Friction Work (J)
Kinetic Energy (J)
Velocity (rad/s)

Figure 5.3: Door trajectories according to the standard friction model, assuming constant friction.
See also the trajectory estimates from real data in Figure 5.5. Note that the velocity
has a different physical unit than friction work and kinetic energy and will in general
not be in the same scalar range. However, the depicted values are similar to those
measured in our experiments.

for the door to stop at θT as

ω =

√
2
τf
I

(θT − θ0) (5.3)

Since I and τf only appear in form of the fraction α = τf/I in Equation 5.2 and 5.3, we
can also use the acceleration α instead. Given the current position θ0, velocity ω0 and the
(constant) deceleration from friction, we can compute the trajectory of a door over time
as

θ(t) = 1
2
αt2 + ω0t+ θ0. (5.4)

Figure 5.3 shows example trajectories generated with the described physical model for
different starting velocities.

Note that the deceleration of the door is not only influenced by static and kinetic friction
but also by other effects such as air drag and gravity (for non-upright doors). In this work
we will summarize all these decelerating forces under the name friction.

5.2. Perception of Doors with a Depth Sensor 97

5.1.2 Linear Motion

The physical models of sliding doors and other prismatic configurations such as drawers,
is straightforward to adapt from the rotational case presented above. The equality of
kinetic energy and friction work given in Eqn. 5.1 for linear motion is

1
2
m (v2t − v2t′) = Ff (xt − xt′), (5.5)

where m is the mass of the object and vt, xt denote the linear velocity and position at
time t. Ff denotes the friction force of the sliding mechanism. The stopping distance ∆x

for a given linear velocity v is thus computed by

∆x =
mv2

2Ff
. (5.6)

The required velocity at a position x0 to reach x0 + ∆x is

v =

√
2Ff∆x

m
. (5.7)

The kinetic friction of a sliding object can be found during constant-velocity motion
as Ff = F T

eex̂, the dot product of the measured force vector and a unit vector along
the sliding direction. Instead of the moment of inertia, we estimate the mass m during
acceleration from

m =

∫ T
0

(Fee − Ff)T x̂ dt

vt − v0
. (5.8)

5.2 Perception of Doors with a Depth Sensor

As described in the beginning of this chapter, we want to learn a model of the dynamics
of a door to be able to predict the effects of the actions of the robot. In this section we
propose perception methods that allow the robot to learn how friction decelerates the
door from observations with a depth sensor. With these methods, the robot can learn the
model of the door either passively by observing other agents operating the door, or by
perceiving it during interactive experimentation.

As a requirement for converting the position, velocity and applied force of the end
effector of the robot to angular position, velocity and torques of the door, we need to
obtain a precise estimate of the hinge location of the door. Sturm et al. [115] and others
proposed methods to estimate the kinematics of articulated objects from sensor data, e.g.,
by tracking a fitted rectangle, a marker on the door, or the end effector pose. Here we
propose an approach that requires only an arbitrary point and normal on the surface of the

98 Chapter 5. Interactive Perception and Manipulation of Doors

door. This allows us to compute the geometry using only a planar depth sensor such as a
laser range scanner or a single scan line from a depth camera. Without loss of generality,
we assume the depth sensor to provide Cartesian point measurements {pi ∈ R2}N0 as
obtained, e.g., by back-projecting the measurements of a horizontal laser range scan or
projection of a point cloud from an RGB-D camera to the horizontal plane.

5.2.1 Estimating the Door State

We assume the robot is positioned in front of the door, e.g., by using the methods of
Anguelov et al. [4], Limketkai et al. [81] or Rusu et al. [108], We then filter the measure-
ments with a bounding box to make sure we observe the door only. The dimensions of
the box depend on the uncertainty in the estimate of the robot’s relative position to the
door. We then apply a statistical filter to the remaining measurements to reject points far
from their neighbors, e.g., as possibly obtained at the edge of the door.

To estimate the angle of the door, we subtract the mean p from the remaining mea-
surements and determine the door normal of the data set using the principal components
analysis (PCA) [9]. In 2D, the normal n = [ny, nx]

T is given by the eigenvector with the
smaller eigenvalue. We obtain the current state θ of the door from n as

θ = atan2(ny, nx) (5.9)

5.2.2 Estimating the Hinge Position

Maximum Likelihood Estimation

From repeated observation of a moving door, we get several measurements for the mean
point pj and the door normal nj . We track the direction of the door normal, to make sure
that it always points in the same direction. After at least three measurements, we can
apply a least squares optimization to compute the location of the hinge in closed form.
We define the vector h = [hx, hy, hr]

T , where [hx, hy] is the hinge location and hr is the
distance of the hinge to the line at the surface of the door. This parameterization explicitly
allows the hinge to be non-collinear to the door surface, as there may be a substantial
offset of the hinge orthogonal to the perceived surface. Each measurement must satisfy

[nTj , 1]h = nTj pj. (5.10)

Defining the vector g = [. . .nTj pj . . .]
T and the matrix M = [. . . [nTj , 1]T . . .]T , we

can directly compute the hinge parameters as

h = M+g, (5.11)

5.2. Perception of Doors with a Depth Sensor 99

Initial estimate of
the door location

Robot Pose

Door
normal
nj

pj : Inlier mean

Hinge (h)

Bounding
polygon

Figure 5.4: Online estimation of the door state and its kinematics from laser range scans (top
view). Laser measurements are shown as blue (outliers) and green (inliers) dots. The
bounding polygon is initialized as a small box at the initial estimate of the door
location and expanded online.

whereM+ = MT (MMT)−1 is the pseudo inverse.
To ensure tracking of the door over the full range of angles, we use the available state

estimates to extrude the bounding box into a ring segment. Figure 5.4 illustrates the
results after observing a full opening motion.

Accelerated Convergence

The described approach accurately determines the actual center of rotation, but requires
observations of a variety of door states before converging. Observing a 90◦ door swing
results in a highly precise estimate. However, for an observed motion of only few degrees,
the estimate is far less accurate and stable than for the estimation algorithm of a collinear
hinge as, e.g., [126], due to the higher degrees of freedom. If the robot interacts with an
unknown door and we want to avoid the difficulties associated with whole body motion,
i.e., the coordinated motion of base and manipulator, it is important to be able to get a
good approximation of the hinge as early as possible. Assuming the workspace of the
robot manipulator to be smaller than the required workspace for moving the door to the
desired final state, the motion used for estimating the geometry will reduce the range
available for accelerating the door to reach the desired state.

We therefore desire to stabilize the initial estimates. A common solution for this is the
use of a prior. Unfortunately, a reasonable prior for the position of the hinge would be
bimodal – with the modes on each side of the door plane – which cannot be represented

100 Chapter 5. Interactive Perception and Manipulation of Doors

in the above formulation. We therefore use the degenerate measurement n0 = [0, 0], with
which the first constraint (Equation 5.10) becomes

[0, 0, 1]h = 0 (5.12)

hr = 0. (5.13)

This effectively sets a prior of zero on the radius hr without constraining the hinge
location parameters [hx, hy]. In practice, this makes the initial estimates as stable as in
the collinear estimation case, yet the algorithm will still converge to the correct location
without noticeable delay or deviation.

5.2.3 Learning the Dynamics

To learn the dynamic behavior of the door from depth perception, we use the door state
estimation method from Section 5.2.1 to obtain the trajectory Θ = {θt0, . . . , θtN} of the
door and determine the deceleration of the door caused by friction. This is applicable
both, when learning from human demonstration and during interactive experimentation.
We want the model to generalize with respect to the starting position and velocity of the
door, such that the robot can predict the motion of the door at any time. In practice, the
deceleration of doors by friction and other effects may significantly change throughout
the trajectory of the door. Hence, the total friction work over an angular distance changes
depending on the point of release – and therefore the required kinetic energy for the
desired stopping distance. We thus need to take the variation in deceleration over the
course of the trajectory into account. To ensure generalization, we thus need to learn a
deceleration profile αf (θ) of the door that depends on the opening angle.

Deceleration Estimation

Our measurements reflect the opening angle of the door. The deceleration is the second
derivative of the angle with respect to time. However, direct numerical differentiation of
noisy data amplifies the noise and therefore leads to unusable deceleration values. To be
robust to the noise in the observations, we apply the regression techniques presented in
Section 2.3.

For an unknown door, we have no generally applicable information on the global
shape of the deceleration profile. However, as the forces which the door is subject to,
e.g., friction in the hinge, air drag and gravity, typically do not change abruptly, we may
assume that, locally, the deceleration is well approximated by a term constant or linear
with respect to time. As a consequence from the equations of motion, we know that the
door trajectory can then be locally approximated by a second or third order polynomial.
We therefore apply the locally weighted regression approach described in Section 2.3.2,

5.2. Perception of Doors with a Depth Sensor 101

which allows us to obtain the deceleration as one of the coefficients of the parametric
model.

Given a trajectory Θ of N timestamped measurements θt we compute coefficients x
of the locally fit curve at time t′ by minimizing the squared error function

F (x) =
∑

t
wt′(t) (θt − ΦT

t x)2, (5.14)

where wt′(t) is the tricube weight function centered at t′ (see Section 2.3.2), and Φt is
the vector of the polynomial basis functions, as defined in Section 2.3.1, Equation 2.42.
Following Equation 2.50, the parameter vector x that minimizes the weighted squared
error at t′ is determined by solving the system of linear equations∑

t
θtwt′(t) ΦT

t︸ ︷︷ ︸
1×d

= xT
(∑

t
wt′(t) ΦtΦ

T
t

)
︸ ︷︷ ︸

d×d

. (5.15)

The deceleration at t is then directly obtained as the corresponding component of x. In
our experiments, the assumption of locally static deceleration led to satisfactory results.
Figure 5.5 shows two plots of the resulting decelerations and velocities for a set of
demonstrated trajectories for a single door. The dependency of the deceleration on the
position of the door is clearly visible in both plots. More subtle, but also noticeable is
the dependency of the deceleration on the velocity, e.g., by the different magnitude of the
variation in the lower plot.

Prediction from a Single Trajectory

The regression approach presented above allows us to compute the deceleration as a
function of the angle, αf (θ), in the range of the observed positions. Based on this, we can
predict the door trajectory given the current position θ0 and velocity ω0. By numerically
integrating αf (θ), we can use Equation 5.3 to compute the future velocity at angle θ as

ω2 = ω2
0 + 2

N∑
i=1

αf (θi) θs, (5.16)

where θs = 1
N

(θ−θ0) is the discretization step size and θi = θ0 +(i+ 1
2
)θs is the position

where the deceleration is sampled for the ith discretization step. The stopping distance
can be computed by summing until the right hand side becomes zero.

While the above approach is described only for hinged doors, it is directly applicable
to the case of sliding doors, by exchanging the measurements and predictions of angle,
angular velocity and deceleration to position, linear velocity and deceleration respectively.

102 Chapter 5. Interactive Perception and Manipulation of Doors

0.5 1.0 1.5 2.0
Opening Angle

0.0

0.1

0.2

0.3

0.4
V

el
oc

ity

0 .105
0.090
0.075
0.060
0.045
0.030
0.015

A
cc

el
er

at
io

n

0.5 1.0 1.5 2.0
Opening Angle

0.12

0.10

0.08

0.06

0.04

0.02

0.00

A
cc

el
er

at
io

n

0 .00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

V
el

oc
ity

Figure 5.5: Opening angle (rad), angular velocity (rad/s) and angular acceleration (rad/s2) ex-
tracted from several demonstrations with the same door. The variation of the de-
celeration with respect to the opening angle is clearly visible in both plots. Less
pronounced, but also well visible is the dependency of the deceleration on the veloc-
ity. In the bottom plot this is manifest by the higher amplitude of the curve for faster
motion.

Prediction from Multiple Observations

Using more than one trajectory observation to learn the model allows us to substantially
improve our predictions. As visible from the experiments depicted in Figure 5.5, the
velocity-dependent deceleration forces, i.e., viscous friction and air drag, are not negligi-
ble. Integrating several measurements in our deceleration profile allows us to model this
dependency.

Again, we use regression to model the deceleration of the door from friction. However,
in contrast to the estimation of the deceleration from the timestamped poses in the tra-
jectory, the magnitude of the deceleration itself does neither follow a simple parametric
model with respect to the opening angle, nor with respect to the velocity. While there
are physical models of viscous friction and air drag, our experiments did not fit well to
these. This might be due to dependencies on latent factors, e.g., room geometry, which
substantially influences the air drag. However, even though we have no prior on the un-
derlying process of the friction profile, we can assume that the deceleration values are
highly correlated for similar conditions, i.e., inputs y = [θ, ω]T .

5.2. Perception of Doors with a Depth Sensor 103

To learn the model of the deceleration α(y), we therefore use a Gaussian process
(GP) [102]. A GP is a non-parametric regression method, see Section 2.3.3 for a detailed
discussion. Instead of choosing a parametric model and its degrees of freedom, Gaussian
processes let us directly specify the prior for the model in terms of the correlation between
input locations. Further, GPs have a beneficial extrapolation behavior for generalization
w.r.t. unseen input locations, which allows us to make predictions about new situations
that are similar to, but outside the robot’s experience, e.g., a faster movement or a bigger
opening angle. This is particularly beneficial when the robot interactively learns about a
new door.

A GP is defined by the mean function µ(y) and the covariance function k(yi,yj). To
define the GP for the deceleration profile of the door, we use the mean of all observed
decelerations from the training dataset to compute a constant mean, i.e., µ = 1

N

∑N
i=1 αi.

We subtract the mean from the observed values to obtain the vector of training target
values α = [. . . (αi − µ) . . .]T . We use the squared exponential covariance function to
compute the elements of the training data’s covariance matrix K(Y ,Y) from the training
locations Y = {. . . ,yi, . . .} as

Kij = kSE(yi,yj), (5.17)

where

kSE(yi,yj) = σ2
f exp

−1

2
(yi − yj)T

[
l2θ 0

0 l2ω

]−1
(yi − yj)

 . (5.18)

Since the deceleration can vary quickly over a few degrees, we set the length scale lθ to
5◦. The velocity dependent variations were found to be roughly linear, with varying slope
over θ. We thus enforced approximate linearity with lω = 1, which is longer than the
range of encountered velocities. To predict the acceleration given an angle and a velocity
y∗ we infer the mean ᾱ∗ of the conditional distribution p(α∗ | y) as

ᾱ∗ = k(y∗,Y)(K(Y ,Y) + σ2
nI)−1α, (5.19)

where k(y∗,Y) ∈ RN is a row vector of the covariances of the new input y∗ with the
training dataset inputs Y . The vector α̃ = (K(Y ,Y) + σ2

nI)−1α does not change during
the opening motion and is therefore precomputed, reducing the online computations
to N -fold evaluation of k(y∗,Y) and the dot product with α̃. To maintain real-time
performance for big training datasets, we downsampled the trajectory data in accordance
with the length scale of the locally weighted regression function (in Equation 2.47), which
we used to estimate the deceleration from the observed trajectory.

104 Chapter 5. Interactive Perception and Manipulation of Doors

The learned GP is used to numerically integrate the estimates of the deceleration
analogous to Equation 5.16 with added dependency on the velocity. Figure 5.6 shows
two profiles learned from observations.

As for the learning approach for a single trajectory, the transfer to the case of sliding
doors is easily achieved by exchanging the measurements and predictions of angle, angu-
lar velocity and acceleration by position, linear velocity and acceleration respectively.

5.3 Interactive Learning of the Dynamics from Tactile
Perception

In the previous sections we have presumed a human teacher that initially demonstrates
the door motion to the robot. In this section, we present a method that lets the robot
interactively bootstrap the dynamics model for unknown doors using tactile perception.
The robot can estimate the friction τf and the door’s moment of inertia I using force or
torque sensing during the contact phase of the first opening action. These estimates allow
it to determine when to release the door using Equation 5.2. The friction in the hinge
can be estimated by moving the door at constant angular velocity. For a constant velocity
motion of the door, the torque applied to it by the end effector τee is equal to the friction
torque τf . We can use the linear force Fee at the end effector to compute the applied
torque

τf = τee = Fee × r, (5.20)

where the vector r is perpendicular to the axis of rotation and connects said axis with
the contact point of the door and the end effector of the robot. Since r is computed from
the relative position of the hinge and the end effector, we require an estimate of the
hinge axis. This can be estimated online by the method described in Section 5.2.2. In
our experiments, the estimate obtained before releasing the door was always within a
few centimeters of the final estimate. Since our sensor data is noisy, we average over the
measurements from an interval of about 5◦.

To determine the moment of inertia of the door, we need to estimate ω, the angular
velocity, of the door. Analogous to the torque, we can compute the estimate from the
linear velocity vee of the end effector,

ω = vee × r. (5.21)

Given the velocity ω and the friction τf we can compute the moment of inertia I by

5.3. Interactive Learning of the Dynamics from Tactile Perception 105

0

20

40

60

80

100

120 0.0

0.1

0.2

0.3

0.4

0.5

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

-0.1

-0.08

-0.06

-0.04

-0.02

0

Opening Angle (deg)
Velocity (degs)

A
cc

el
er

at
io

n
(d
eg s2

)

0

20

40

60

80

100

120 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

-0.15

-0.1

-0.05

0

0.05

Opening Angle (deg)
Velocity (degs)

A
cc

el
er

at
io

n
(d
eg s2

)

Figure 5.6: The resulting acceleration profile for two different doors, as modeled by the learned
Gaussian process reflects the variations in deceleration over the position and the
angular velocity.

106 Chapter 5. Interactive Perception and Manipulation of Doors

accelerating the door. When accelerating the door, we can compute I from the relation

α =
τee − τf

I
. (5.22)

To be robust to sensor noise, we integrate the measurements over time. Without further
information, we assume the friction to be constant over the trajectory of the door and
independent of the velocity.∫ T

0

α(t) dt =

∫ T

0

τee(t)− τf
I

dt (5.23)

ω(T)− ω(0) =
1

I

∫ T

0

τee(t)− τf dt (5.24)

I =

∫ T
0
τee(t) dt− τfT
ω(T)− ω(0)

. (5.25)

Given force and position measurements at the end effector at times {t0, . . . , ti, . . . , tT},
we can compute the corresponding effective torques τi = |Fi × ri − τf |. The door’s
moment of inertia can then be estimated by

I =

∑T
i=1 τi(ti − ti−1)
ω(T)− ω(0)

. (5.26)

Inserting the estimates for I and τf into Equation 5.2, we can predict the final opening
angle during the manipulation. However, the accuracy of this method depends greatly on
how well the assumption of constant friction is met.

5.4 Experimental Evaluation

To evaluate the presented approach, we investigate the ability of the robot to learn and
apply the model of the door dynamics to swing closed doors to a desired opening angle.

5.4.1 Experimental Setup

Robot

We use the DLR Light Weight Robot (LWR), a seven degree of freedom manipulator,
with a passive end effector. It is mounted on a KUKA omniRob mobile base. We use
a Hokuyo UTM-30LX laser range scanner to observe the door at 40 Hz. The setup is
shown in Figure 5.7. The LWR is a powerful 7-DOF manipulator with a spherical wrist.
Because the links are designed to be collinear when the manipulator is stretched out,
the motion range of the three ”elbow” joints needs to be limited to a minimum of ±60◦

5.4. Experimental Evaluation 107

Figure 5.7: The DLR Light Weight Robot with custom end effector used in our experiments,
opening the metal door.

to avoid self-collision. This results in a limitation of the dexterous workspace near the
robot, which makes motion planning difficult. For our approach this is not problematic,
as we do not require complex motions and the LWR is powerful enough to accelerate
even heavy doors with high friction within its workspace. We let the robot push the door
using a linear position-controlled motion, such that the door achieves a velocity sufficient
to reach the goal state. In the experiments we position the robot in front of the door and
assume its relative position to be roughly known.

Doors

We demonstrate our approach on substantially different door types. The first door is
a metal door attached to a concrete wall of the building (see Figure 5.7). The door
is comparably heavy but smooth-running. The second door is made of a veneer on a
wooden framework and is attached to a freestanding wooden frame (see Figure 5.1). It
weighs only 27.8 kg. The friction is very low in the beginning, but the hinges are slightly
misaligned, which increases the friction substantially towards 90◦. To increase the variety,
we conducted a further set of experiments with a brush seal attached to the wooden door

108 Chapter 5. Interactive Perception and Manipulation of Doors

0◦

45◦
60◦

90◦

closed 0◦

45◦
60◦

90◦

closed 0◦

45◦
60◦

90◦

closed

Figure 5.8: Visualization of the stopping angles of the doors in our experiments with three doors.
For each door the robot has been commanded to open five times to 45, 60 and 90
degrees. The colored circle segments show the range from minimum to maximum,
the solid black lines designate the mean, the dashed lines the respective commands.
The dynamics model was learned from three observations for each door.

to increase the friction and an additional weight of 1.6 kg firmly attached to the handle.
We will refer to these two configurations of the wooden door as “A” and “B”.

5.4.2 Learning from Human Demonstration

We first evaluate the accuracy and precision of the opening task using models learned
from observing a human demonstrator opening the doors. We recorded three demonstra-
tion of pushes with varying stopping angle for each door. We segmented the recorded
data, as only the part from release to stop follows Equation 5.4. When the robot learns by
experimentation, the release time is known. In case of human demonstrations, we deter-
mine the release time by using a wireless mouse to push the door. The demonstrator holds
the mouse, such that the button makes the contact with the door during pushing. The re-
lease time (when the free motion of the door starts) is then obtained by the button release
event. The stopping time is determined by searching for the maximum angle of the tra-
jectory within some seconds of the release time. With this procedure, demonstrations are
captured within seconds without requiring custom hardware. From the segmented data,
the robot estimates the deceleration using locally weighted regression and creates the
deceleration profile using the Gaussian process. The robot was then commanded to open
each door to 45◦, 60◦ and 90◦. To evaluate the performance, each opening was repeated
five times, resulting in a total of 45 executions. The model has not been updated from the
robot’s own actions. The results are given in Table 5.1 and visualized in Figure 5.8. This
way of door opening is quick in execution. In the experiments, the time the robot was in
contact with the door to accelerate it ranges from 0.6 s to 2.0 s with an average of only
1.0 s. The release angle was between 6 and 16 degrees.

5.4. Experimental Evaluation 109

Command 90.0◦ 60.0◦ 45.0◦

Metal Door 91.5◦ ± 4.7◦ 61.3◦ ± 0.4◦ 46.4◦ ± 0.6◦

Wooden Door A 86.9◦ ± 0.6◦ 62.4◦ ± 1.2◦ 47.4◦ ± 0.6◦

Wooden Door B 93.6◦ ± 1.6◦ 62.8◦ ± 0.7◦ 47.2◦ ± 0.8◦

Summary 90.6◦ ± 4.0◦ 62.2◦ ± 1.0◦ 47.0◦ ± 0.8◦

Table 5.1: Average stopping angle and the standard deviation of 45 door openings, five for each
door and each of three target states.

Learning to Open a Door from Experimentation

D
oo

r A
ng

le
 (D

eg
re

e)

1 3 5 7 9 11 13 1560
65
70
75
80
85
90
95

100

Trial Number

Commanded Stopping Angle
Predicted Stopping Angle
Measured Stopping Angle

Figure 5.9: Unsupervised (purely interactive) learning of the dynamics of a door. Initially the
robot has no knowledge of the door, therefore it estimates the friction and moment of
inertia from tactile perception, as described in Section 5.3. From the second trial on
the robot uses the depth sensor observations from previous trials.

5.4.3 Interactive Experimentation

While demonstrations with the method described in Section 5.2.3 are quickly done, the
robot should be able to learn from its own actions. We evaluated the opening performance
in a task sequence, where the robot generates and updates the model from its own exper-
imentation. For the first opening, we apply the procedure described in Section 5.3, i.e.,
estimating the friction and moment of inertia from tactile perception. For this we use the
torque sensors in the joints of the manipulator. To make the task challenging, we chose
the door with the increasing friction, such that the initial estimate is guaranteed to fail.
The robot therefore falls almost 30◦ short of opening the door to 90◦. However, after only
two observations, the result is within 5◦ of the desired opening angle. Figure 5.9 shows
the whole sequence of 16 trials. The robot releases the door as soon as it predicts the
target state to be reached. The prediction system may notice this too late, because of the
time required to get the end-effector pose updates from the robot’s operating system. In

110 Chapter 5. Interactive Perception and Manipulation of Doors

this case the robot is aware that the door is overshooting and the estimate of how much is
given by the red crosses in the figure. The experiment shows, that the robot is capable to
learn a model of the door through unsupervised experimentation and that the predictions
of this model are as accurate as for a model learned from observing a teacher.

To validate the tactile estimation approach independently of the approach based on
depth-perception, we also verified the estimated moment of inertia. We do not have
ground truth for the moment of inertia of the door, therefore we approximate it using the
mass of the door and assuming a uniform mass distribution. While the latter assumption
is violated by the mass of the door handle, the estimates for I obtained in our experiments
approximately match the value computed this way.

5.5 Related Work

Perception and manipulation of doors has been intensively researched for over a decade.
The following discussion of related work is grouped by the main subtasks involved.

5.5.1 Perception of Doors

Perception of Doors and Handles

The problem of door identification has been tackled by Anguelov et al. [4] who present an
interesting approach based on laser range scans and a panoramic camera. They identify
doors that have been observed in different opening angles by the laser range scanner. The
identified doors allow them to learn how to distinguish walls and doors by color, such
that similar doors can be identified in the camera data. While limited in determining the
exact geometry of the doors, their approach provides valuable annotations of the doors
in a map.

Limketkai et al. [81] propose a system to identify doors in 2D occupancy grid maps by
learning common properties of the doors in the specific environment, such as the width
and the indent from the wall. While based on strong assumptions, the method has the
advantage to not rely on observing doors in different states. Rusu et al. [108] propose a
system for identifying doors and extracting information about the geometry. They detect
doors in 3D point clouds from a tilting laser range scanner by searching for offset planes
that follow the standards for wheelchair accessible doors.

Assuming the door location to be roughly known, several methods have been proposed
to detect the handle using visual features [73, 74] or a laser range scanner [101]. Others
methods additionally obtain the exact location and dimensions of the door frame, e.g.
using active vision with a stereo camera [3] or a tilting laser range scanner [108].

For quasi-static manipulation, a detailed investigation of friction profiles of articulated
household objects has been manually conducted by Jain et al. [64]. They propose to apply

5.5. Related Work 111

this information to, e.g., detect when a mechanism is blocked. In our work, we found
that the friction forces in moving doors substantially vary with the speed of the door, and
therefore proposed to learn a deceleration profile that considers the velocity of the door.
We present a method for learning the deceleration profile only from observations with a
depth sensor, or from tactile sensing.

Estimating the Kinematic Structure

There has been intensive research on accurately estimating the kinematic model of artic-
ulated objects, either during manipulation from the end effector [67, 98] trajectory, or by
tracking the object using visual or depth cameras [68, 114]. Sturm et al. [115] propose
an approach that is able to distinguish various kinematic structures, learning the most ap-
propriate model for the mechanism at hand. However, these methods all require tracking
of fixed points on the mechanism, e.g., the firmly grasped handle via forward kinematics,
visual features or markers. We do not require a grasp, hence we cannot use the trajectory
of the end effector. We therefore proposed a novel approach with the ability to learn the
kinematics using a depth sensor such as a laser range scanner or an RGB-D camera in
Section 5.2.2.

5.5.2 Manipulation of Doors

Unlatching the Door

Many approaches to door opening focus on unlatching the door and consider the door to
be open after unlatching. Reliable results have been experimentally demonstrated, e.g., by
Chitta et al. [16] and Jain and Kemp [63]. Complementary, we do not consider unlatching
of the door in this work but assume the door to be unlatched and focus on quickly and
accurately moving the door to a desired state.

Control Approaches

Several control algorithms that implement compliant control have been proposed. Com-
pliant manipulation aims at applying force only along the constrained trajectory of the
articulated object, while keeping lateral forces to a minimum. This may also be referred
to as hybrid control, when combining position or velocity control to move along the
trajectory and force control orthogonal to the trajectory to minimize lateral forces.

In the work of Meeussen et al. [87], the robot maintains a force in the forward direction
of the end effector, which is assumed to follow the trajectory of the object due to the firm
grasp and the compliant control. Some approaches learn the kinematic model during
the manipulation [67, 98, 114] and use it for hybrid control. Reachability issues are
usually addressed by moving the base, to increase the workspace and keep the manipulator

112 Chapter 5. Interactive Perception and Manipulation of Doors

away from singular configurations [87, 98]. In contrast to motion planning approaches,
control algorithms can not foresee whether the robot will succeed or end up in a dead-end
configuration. Therefore the overall approach needs to ensure that the goal of the task is
reachable.

The ability to predict the dynamics of the door, as provided by our approach, would
be particularly beneficial in combination with control approaches that perform a quick
motion. The robot could then release the grasp earlier. Either as soon as the kinetic energy
suffices to reach the target state as in our experiments, or when the required momentum
is below a safety threshold. This reduces reachability problems, as the contact phase is
reduced.

Motion Planning Approaches

In contrast to control approaches, motion planning approaches plan the manipulation in
advance by searching for a sequence of actions that will lead from an initial state to a
desired goal state [16], [13]. The search for admissible intermediate states intrinsically
allows to avoid issues with reachability, singular configurations and collisions. If a plan
is found, it is therefore guaranteed that the robot will not be stuck in a local dead end.
Unfortunately the planning space is high dimensional and highly constrained. Finding a
valid plan in acceptable time is therefore a topic of intensive research [75, 120, 129]. In
most planning approaches a rigid grasp of the object is assumed. To relax the constraints
on the manipulator arising from the grasp, Diankov et al. [24] propose to use caging
grasps, that allow small variations of the end effector position during the task, easing
the search for transitional states. Nevertheless, motion planning in the context of door
manipulation remains algorithmically complex and computationally highly demanding.

5.6 Conclusion

In this chapter we investigated the perception and modeling of doors with a depth sensor,
to enable a robot to navigate indoor environments. We advance the state-of-the-art in
learning of the kinematics of the door by a novel method based on depth data only. We
further propose an approach to accurately estimate the deceleration of the door and learn
a model of its dynamics. We demonstrate that the approach is applicable to learn from
interactive experimentation or from observation of demonstrations by a human.

Using a non-parametric regression, we modeled the deceleration with respect to angle
and velocity of the door. In experiments with a real robot, we demonstrated that we can
exploit this model of the dynamics in a door opening task to implement a manipulation
strategy that reduces the requirements on the dexterous workspace of the robot. Because
the model allows to predict the trajectory of the door throughout the manipulation, the

5.6. Conclusion 113

requirement for a fixed grasp is removed and a point contact is sufficient for accurately
moving the door to a desired angle. We showcased this by accelerating the door and
releasing it as soon as possible, while precisely achieving a desired state.

The presented approaches open interesting opportunities for future research. Integra-
tion of the models into a planning approach would make planning and execution more
flexible and would lead to a tighter integration with overall mission planning. Further we
have chosen a fixed robot position and – except for the force applied – a fixed manipulator
motion. Both should be chosen with respect to the position of the robot and the kinematic
and dynamic properties of its manipulator; to ensure success, where possible, or to limit
the maximum speed of the door.

Chapter 6

Conclusions

Truly autonomous robots must be capable to model their environment from their onboard
sensors. The learned models are task-specific and essential for planning their actions. In
this thesis, we presented our contributions to environment modelling, focusing on the
perception of robots operating in indoor environments. We identified the creation of vol-
umetric maps and modelling of doors as fundamental skills for indoor navigation of such
robots. Therefore, we presented a system for simultaneous localization and mapping
(SLAM) in 3D with RGB-D cameras, based on sparse visual features. We developed
several novel techniques for SLAM frontend and backend that increase the accuracy and
improve the robustness with respect to challenging input data. A thorough evaluation
shows the benefits of our contributions on a public benchmark dataset, which covers a
wide range of real-world scenarios. Further, we could establish that our system outper-
forms other state-of-the-art systems.

Compared to cameras with wide-angle lenses or with catadioptric extensions such as
parabolic mirrors, RGB-D cameras have a limited field of view. This property, and the
limited range of the depth perception may lead to a lack of usable data in SLAM ap-
plications. To extend the available field of view, our SLAM system can fuse data from
multiple RGB-D sensors. We devised a novel approach to the extrinsic calibration of mul-
tiple RGB-D cameras, which is integrated into the SLAM backend and therefore allows
to calibrate the sensors while mapping. Furthermore , we presented a novel extension
for RGB-D cameras, which uses planar mirrors to split the image, creating two opposite
viewpoints from a single sensor. In experiments on a real robot, we showed that the ben-
efits of this catadioptric extension in a SLAM application are similar to those obtained
with a second sensor.

For indoor navigation, an essential task for autonomous robots is the manipulation
of doors, as their effective range of operation otherwise reduces to a single room. Cur-
rent state-of-the-art approaches require complex manipulators with a large dexterous
workspace, which is not feasible for consumer household robots. However, we showed
that these requirements can be greatly lowered if the robot uses a manipulation strategy
that considers the dynamics of the door. We consequently presented approaches to learn

116 Chapter 6. Conclusions

a model of the kinematics and dynamics of a door. We developed a method that allows
the robot to learn from demonstrations using a 3D sensor to perceive the door in mo-
tion. Further, we showed that the robot can bootstrap his model interactively using tactile
sensing. In experiments with a real robot, we demonstrated that our approach enables the
robot to open a door using only a simple forward motion with a point contact, effectively
requiring contact to the door only for a range of a few centimeters. Despite these relaxed
requirements, the robot is able to bring the door precisely to a desired state.

The approaches presented in this thesis form a novel foundation for indoor navigation,
which allows to realize robotic applications with reduced cost. Thus, this work will be
particularly beneficial for the progress of consumer robots.

Appendix A

Detailed Benchmarking Results

Here, we list the performance of our RGB-D SLAM implementation RGBDSLAM v2, as
available on github1. We state various statistics on the error in the estimated trajectory,
applying all contributions proposed in Chapter 3. Scientific publications typically select
specific statistics to emphasize certain properties. In contrast, here we attempt to provide
a comprehensive evaluation to serve as a reference which accompanies the error metrics,
ground truth and datasets of the benchmark.

A.1 Dataset with Public Ground Truth
In this section, we list the results of all datasets for which the ground truth is publicly
available, except for the calibration sequences which mostly consist of recordings of
checkerboards. The development of our approach was mostly guided by experiments on
the sequences of the “fr1” and the “pioneer SLAM” datasets. Nevertheless, as the table
below shows, our approach is also highly accurate on most of the remaining sequences.

Sequence Name rmse median mean std max FPS
(m) (m) (m) (m) (m) (Hz)

fr1 360 0.028 0.146 0.060 0.056 0.066 23.3
fr1 desk 0.014 0.083 0.021 0.019 0.025 26.2
fr1 desk2 0.021 0.105 0.029 0.024 0.036 34.6
fr1 floor 0.015 0.109 0.027 0.024 0.031 26.6
fr1 plant 0.027 0.275 0.051 0.048 0.057 20.6
fr1 room 0.035 0.201 0.086 0.077 0.092 10.8
fr1 rpy 0.011 0.069 0.021 0.019 0.024 18.2
fr1 teddy 0.022 0.417 0.050 0.048 0.055 10.3
fr1 xyz 0.008 0.062 0.013 0.011 0.015 25.8
fr2 360 hemisphere 0.151 1.633 0.256 0.243 0.297 36.5
fr2 360 kidnap 0.215 1.245 0.440 0.411 0.489 17.0
fr2 coke 0.048 0.250 0.064 0.050 0.080 17.1
fr2 desk 0.013 0.067 0.029 0.027 0.032 26.6

Continued on the next page

1http://felixendres.github.io/rgbdslam v2

http://felixendres.github.io/rgbdslam_v2

118 Appendix A. Detailed Benchmarking Results

Sequence Name rmse median mean std max FPS
(m) (m) (m) (m) (m) (Hz)

fr2 desk with person 0.007 0.079 0.017 0.017 0.019 10.5
fr2 dishes 0.041 0.172 0.052 0.038 0.066 33.3
fr2 flowerbouquet 0.022 0.098 0.031 0.023 0.038 29.6
fr2 flowerbouquet brownbackground 0.382 1.677 0.664 0.448 0.766 30.2
fr2 large no loop 0.480 2.330 1.317 1.199 1.402 18.4
fr2 large with loop 0.148 0.892 0.350 0.294 0.380 27.6
fr2 metallic sphere 0.138 0.811 0.214 0.180 0.255 28.3
fr2 metallic sphere2 0.032 0.174 0.054 0.048 0.063 28.5
fr2 pioneer 360 0.073 0.366 0.162 0.135 0.178 16.8
fr2 pioneer slam 0.068 0.619 0.140 0.129 0.155 25.8
fr2 pioneer slam2 0.069 0.328 0.188 0.216 0.201 18.5
fr2 pioneer slam3 0.121 0.665 0.262 0.227 0.289 26.9
fr2 rpy 0.007 0.038 0.014 0.013 0.016 27.2
fr2 xyz 0.008 0.043 0.013 0.011 0.015 29.8
fr3 cabinet 0.009 0.074 0.032 0.031 0.033 28.5
fr3 large cabinet 0.027 0.138 0.052 0.053 0.058 32.8
fr3 long office household 0.008 0.055 0.022 0.021 0.024 9.4
fr3 nostructure notexture far 0.036 0.155 0.070 0.071 0.079 33.7
fr3 nostructure notexture near withloop 0.074 0.289 0.128 0.112 0.148 27.8
fr3 nostructure texture far 0.028 0.268 0.038 0.031 0.047 32.0
fr3 nostructure texture near withloop 0.008 0.088 0.018 0.017 0.020 33.5
fr3 sitting halfsphere 0.010 0.086 0.018 0.016 0.021 25.7
fr3 sitting rpy 0.020 0.191 0.023 0.017 0.031 30.8
fr3 sitting static 0.003 0.023 0.005 0.005 0.006 34.4
fr3 sitting xyz 0.012 0.068 0.025 0.022 0.028 27.2
fr3 structure notexture far 0.011 0.064 0.025 0.024 0.027 30.3
fr3 structure notexture near 0.006 0.045 0.025 0.025 0.026 33.1
fr3 structure texture far 0.015 0.075 0.031 0.026 0.035 25.3
fr3 structure texture near 0.011 0.065 0.031 0.030 0.033 20.8
fr3 teddy 0.013 0.258 0.027 0.025 0.030 10.6
fr3 walking halfsphere 0.021 0.147 0.035 0.031 0.041 17.1
fr3 walking rpy 0.142 1.076 0.101 0.062 0.174 30.2
fr3 walking static 0.005 0.045 0.010 0.009 0.011 21.7
fr3 walking xyz 0.029 0.139 0.038 0.027 0.048 26.7

A.2. Benchmark Dataset Sequences 119

A.2 Benchmark Dataset Sequences

This section lists the sequences by category and states properties that are helpful in the
interpretation of the results in Appendix A.1. The category name reflects the purpose of
the sequences, e.g., evaluation of the performance for “Handheld SLAM”. The duration,
trajectory length and the covered area are obviously correlated to the error. The stated
velocities influence the overlap between frames and – more severely – the motion blur.
For further details about the sequences, e.g. a short description of each sequence, we refer
the reader to the web page of the benchmark2.

Sequence Name Duration
(s)

Trajectory
Length

(m)

Average
transl.

velocity
(m/s)

Average
angular
velocity
(deg/s)

Trajectory
dimensions

(m × m × m)

Category: Testing and Debugging
freiburg1 xyz 30.09 7.112 0.244 8.920 0.46 × 0.70 × 0.44
freiburg1 rpy 27.67 1.664 0.062 50.147 0.15 × 0.21 × 0.21
freiburg2 xyz 122.74 7.029 0.058 1.716 1.30 × 0.96 × 0.72
freiburg2 rpy 109.97 1.506 0.014 5.774 0.21 × 0.22 × 0.11

Category: Handheld SLAM
freiburg1 360 28.69 5.818 0.210 41.600 0.54 × 0.46 × 0.47
freiburg1 floor 49.87 12.569 0.258 15.071 2.30 × 1.31 × 0.58
freiburg1 desk 23.40 9.263 0.413 23.327 2.42 × 1.34 × 0.66
freiburg1 desk2 24.86 10.161 0.426 29.308 2.44 × 1.47 × 0.52
freiburg1 room 48.90 15.989 0.334 29.882 2.54 × 2.21 × 0.51
freiburg2 360
hemisphere 91.48 14.773 0.163 20.569 3.06 × 3.48 × 0.58

freiburg2 360 kidnap 48.04 14.286 0.304 13.425 4.26 × 3.44 × 0.12
freiburg2 desk 99.36 18.880 0.193 6.338 3.90 × 4.13 × 0.57
freiburg2 large no loop 112.37 26.086 0.243 15.090 3.63 × 5.07 × 0.20
freiburg2 large with loop 173.19 39.111 0.231 17.211 3.39 × 4.26 × 0.53

freiburg3 long office
household 87.09 21.455 0.249 10.188 5.12 × 4.89 × 0.54

Category: Robot SLAM
freiburg2 pioneer 360 72.75 16.118 0.225 12.053 4.24 × 4.38 × 0.06
freiburg2 pioneer slam 155.72 40.380 0.261 13.379 5.50 × 5.94 × 0.07
freiburg2 pioneer slam2 115.63 21.735 0.190 12.209 4.98 × 5.34 × 0.07
freiburg2 pioneer slam3 111.91 18.135 0.164 12.339 5.29 × 5.25 × 0.07

Continued on the next page

2http://vision.in.tum.de/data/datasets/rgbd-dataset/download

http://vision.in.tum.de/data/datasets/rgbd-dataset/download

120 Appendix A. Detailed Benchmarking Results

Sequence Name Duration
(s)

Trajectory
Length

(m)

Average
transl.

velocity
(m/s)

Average
angular
velocity
(deg/s)

Trajectory
dimensions

(m × m × m)

Category: Structure vs. Texture
freiburg3 nostructure
notexture far 15.79 2.897 0.196 2.712 0.24 × 2.95 × 0.05

freiburg3 nostructure
notexture near withloop 37.74 11.739 0.319 11.241 2.98 × 3.65 × 0.34

freiburg3 nostructure
texture far 15.53 4.343 0.299 2.890 0.12 × 4.33 × 0.09

freiburg3 nostructure
texture near withloop 56.48 13.456 0.242 7.430 3.66 × 4.79 × 0.32

freiburg3 structure
notexture far 27.28 4.353 0.166 4.000 0.87 × 3.89 × 0.06

freiburg3 structure
notexture near 36.44 3.872 0.109 6.247 0.53 × 3.39 × 0.18

freiburg3 structure
texture far 31.55 5.884 0.193 4.323 1.90 × 4.56 × 0.08

freiburg3 structure
texture near 36.91 5.050 0.141 7.677 1.01 × 4.01 × 0.17

Category: Dynamic Objects
freiburg2 desk with
person 142.08 17.044 0.121 5.340 2.30 × 3.93 × 0.51

freiburg3 sitting static 23.63 0.259 0.011 1.699 0.12 × 0.08 × 0.05
freiburg3 sitting xyz 42.50 5.496 0.132 3.562 0.99 × 0.93 × 1.02
freiburg3 sitting
halfsphere 37.15 6.503 0.180 19.094 1.46 × 0.88 × 1.19

freiburg3 sitting rpy 27.48 1.110 0.042 23.841 0.18 × 0.12 × 0.20
freiburg3 walking static 24.83 0.282 0.012 1.388 0.10 × 0.05 × 0.05
freiburg3 walking xyz 28.83 5.791 0.208 5.490 0.94 × 0.82 × 1.15
freiburg3 walking
halfsphere 35.81 7.686 0.221 18.267 1.83 × 0.83 × 1.31

freiburg3 walking rpy 30.61 2.698 0.091 20.903 0.79 × 0.47 × 0.14
Category: 3D Object Reconstruction

freiburg1 plant 41.53 14.795 0.365 27.891 1.71 × 1.70 × 1.07
freiburg1 teddy 50.82 15.709 0.315 21.320 2.42 × 2.24 × 1.43
freiburg2 coke 84.55 11.681 0.140 9.432 1.60 × 2.02 × 0.73
freiburg2 dishes 100.55 15.009 0.151 9.666 1.79 × 2.18 × 0.67
freiburg2 flowerbouquet 99.40 10.758 0.109 8.464 1.64 × 1.65 × 0.35
freiburg2 flowerbouquet
brownbackground 76.89 11.924 0.157 10.598 1.76 × 1.99 × 0.70

freiburg2 metallic sphere 75.60 11.040 0.148 10.422 1.82 × 2.23 × 0.71

freiburg2 metallic
sphere2 62.33 11.813 0.193 12.946 1.74 × 1.97 × 0.77

freiburg3 cabinet 38.58 8.111 0.216 10.248 2.72 × 2.50 × 0.44
freiburg3 large cabinet 33.98 11.954 0.362 8.747 3.70 × 5.44 × 0.28
freiburg3 teddy 80.79 19.807 0.248 20.410 2.06 × 2.00 × 1.05

List of Figures

2.1 Polynomial regression . 16
2.2 Locally weighted regression . 17
2.3 The tricube weighting function . 18
2.4 Vectors can represent points in space and function values 20
2.5 Gaussian process with varying length scales . 22
2.6 Examples for robust kernel functions in comparison to the squared error. 25

3.1 Schematic overview of our RGB-D SLAM system . 32
3.2 Color and depth images as obtained by a Microsoft Kinect. 33
3.3 Color and depth as obtained from the project Tango mobile phone from Google. 33
3.4 Keypoints and sparse optical flow. 35
3.5 Occupancy voxel representation of the sequence “fr1 desk” 39
3.6 Occupancy voxel map and examples of the respective input images 40
3.7 Comparison of the SLAM error metrics ATE and RPE 44
3.8 Trajectories with illustrated ATE error terms . 45
3.9 Scenario-based evaluation of the impact of improved keypoint detection 47
3.10 Evaluation of the impact of improved keypoint detection per feature type 48
3.11 Impact of graph-based loop closure search on the pose graph 51
3.12 Statistical graph pruning results . 52
3.13 Illustration of the environment measurement model (EMM) 54
3.14 Evaluation of the proposed environment measurement model (EMM) 59
3.15 Combination of the EMM and statistical graph pruning 60
3.16 Comparison to DVO-SLAM . 64
3.17 Comparison to bundle adjustment approaches . 65
3.18 Comparison to RGB-D odometry approaches. 66

4.1 Experimental environment with robot’s trajectory. 72
4.2 Comparison of single and multi-sensor RGB-D SLAM. 74
4.3 Illustration of the concept of the virtual viewpoints. 75
4.4 The assembled catadioptric sensor using an Asus Xtion PRO Live. 76
4.5 The CAD model of the mirror mount. 77
4.6 Screenshot of our RGB-D SLAM software. 78
4.7 Map and trajectory estimate using the catadioptric sensor. 79
4.8 Trajectory comparison for one, two, and the catadioptric sensors. 80
4.9 Unobservable degrees of freedom of the calibration. 82
4.10 Convergence of the calibration for two RGB-D cameras. 84
4.11 Degrees of freedom of the catadioptric viewpoint calibration with additional constraints. . 85
4.12 Convergence of the calibration for the catadioptric RGB-D cameras. 87

5.1 Execution of a door swing. 93

122 List of Figures

5.2 Overview of the proposes methods. 94
5.3 Door trajectories according to the standard friction model. 96
5.4 Estimation of the door state and kinematics. 99
5.5 Trajectory data extracted from several observations. 102
5.6 Learned acceleration profiles. 105
5.7 The robot used in the experiments. 107
5.8 Visualization of the results for the opening swing. 108
5.9 Results for unsupervised (purely interactive) learning. 109

Bibliography
[1] P. Agarwal, G. D. Tipaldi, L. Spinello, C. Stachniss, and W. Burgard. Robust map optimization using

dynamic covariance scaling. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
May 2013.

[2] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless, S. M. Seitz, and R. Szeliski. Building
Rome in a day. Commun. ACM, 54(10):105–112, Oct. 2011.

[3] A. Andreopoulos and J. K. Tsotsos. Active vision for door localization and door opening using
playbot: A computer controlled wheelchair for people with mobility impairments. In Computer and
Robot Vision, 2008. CRV ’08. Canadian Conference on, pages 3–10, May 2008.

[4] D. Anguelov, D. Koller, E. Parker, and S. Thrun. Detecting and modeling doors with mobile robots.
In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pages 3777–3784, 2004.

[5] R. Arandjelović and A. Zisserman. Three things everyone should know to improve object retrieval.
In IEEE Conference on Computer Vision and Pattern Recognition, 2012.

[6] T. Bailey and H. Durrant-Whyte. Simultaneous localization and mapping (slam): Part ii. Robotics
& Automation Magazine, IEEE, 13(3):108–117, 2006.

[7] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust features (SURF). Comput. Vis.
Image Underst., 110:346–359, 2008. ISSN 1077-3142.

[8] P. J. Besl and H. D. McKay. A method for registration of 3-D shapes. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 14(2):239–256, 1992.

[9] C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[10] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[11] J. Brookshire and S. Teller. Automatic calibration of multiple coplanar sensors. In Proc. of Robotics:
Science and Systems (RSS), 2011.

[12] J. Brookshire and S. Teller. Extrinsic calibration from per-sensor egomotion. In Proc. of Robotics:
Science and Systems (RSS), 2012.

[13] F. Burget, A. Hornung, and M. Bennewitz. Whole-body motion planning for manipulation of
articulated objects. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), May 2013.

[14] G. Carrera, A. Angeli, and A. J. Davison. SLAM-based automatic extrinsic calibration of a multi-
camera rig. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2011.

[15] A. Censi. An ICP variant using a point-to-line metric. In Proc. of the IEEE Int. Conf. on Robotics
& Automation (ICRA), Pasadena, CA, May 2008.

124 Bibliography

[16] S. Chitta, B. Cohen, and M. Likhachev. Planning for autonomous door opening with a mobile
manipulator. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pages 1799–1806,
2010.

[17] S. Choi, T. Kim, and W. Yu. Performance evaluation of ransac family. In Proceedings of the British
Machine Vision Conference, pages 81.1–81.12. BMVA Press, 2009.

[18] O. Chum, J. Matas, and J. Kittler. Locally optimized ransac. In Pattern Recognition, pages 236–243.
Springer, 2003.

[19] W. S. Cleveland. Robust locally weighted regression and smoothing scatterplots. Journal of the
American Statistical Association, 74(368):829–836, 1979.

[20] M. Cummins and P. Newman. Appearance-only SLAM at large scale with FAB-MAP 2.0. The
International Journal of Robotics Research, 2010.

[21] J. Cunha, E. Pedrosa, C. Cruz, A. J. Neves, and N. Lau. Using a depth camera for indoor robot
localization and navigation. DETI/IEETA-University of Aveiro, Portugal, 2011.

[22] B. Curless and M. Levoy. A volumetric method for building complex models from range images.
In SIGGRAPH, 1996.

[23] A. Davison. Real-time simultaneous localisation and mapping with a single camera. In Proc. of the
IEEE Intl. Conf. on Computer Vision (ICCV), 2003.

[24] R. Diankov, S. S. Srinivasa, D. Ferguson, and J. Kuffner. Manipulation planning with caging grasps.
In Humanoids, pages 285–292, 2008.

[25] I. Dryanovski, C. Jaramillo, and J. Xiao. Incremental registration of rgb-d images. In Proc. of the
IEEE Int. Conf. on Robotics & Automation (ICRA), pages 1685–1690, 2012.

[26] I. Dryanovski, R. Valenti, and J. Xiao. Fast visual odometry and mapping from rgb-d data. In
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pages 2305–2310, May 2013.

[27] H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping: part i. Robotics &
Automation Magazine, IEEE, 13(2):99–110, 2006.

[28] F. Endres, J. Hess, N. Franklin, C. Plagemann, C. Stachniss, and W. Burgard. Estimating range infor-
mation from monocular vision. In Workshop Regression in Robotics - Approaches and Applications
at Robotics: Science and Systems (RSS), Seattle, WA, USA, 2009.

[29] F. Endres, C. Plagemann, C. Stachniss, and W. Burgard. Scene analysis using latent Dirichlet
allocation. In Proc. of Robotics: Science and Systems (RSS), Seattle, WA, USA, 2009.

[30] F. Endres, J. Hess, N. Engelhard, J. Sturm, and W. Burgard. http://www.ros.org/wiki/openni/
Contests/ROS3D/RGBD-6D-SLAM, 2011.

[31] F. Endres, J. Hess, and W. Burgard. Graph-based action models for human motion classification. In
ROBOTIK, May 2012.

[32] F. Endres, J. Hess, N. Engelhard, J. Sturm, and W. Burgard. 6D visual SLAM for RGB-D sensors.
at - Automatisierungstechnik, 60:270–278, May 2012.

http://www.ros.org/wiki/openni/Contests/ROS 3D/RGBD-6D-SLAM
http://www.ros.org/wiki/openni/Contests/ROS 3D/RGBD-6D-SLAM

Bibliography 125

[33] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard. An evaluation of the
RGB-D SLAM system. In Proc. of the IEEE International Conference on Robotics and Automation
(ICRA), St. Paul, Minnesota, May 2012.

[34] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard. RGBDSLAM. http:
//ros.org/wiki/rgbdslam, July 2013.

[35] F. Endres, J. Trinkle, and W. Burgard. Interactive perception for learning the dynamics of articulated
objects. In Proceedings of the ICRA 2013 Mobile Manipulation Workshop on Interactive Perception,
Karlsruhe, Germany, May 2013.

[36] F. Endres, J. Trinkle, and W. Burgard. Learning the dynamics of doors for robotic manipulation.
In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Tokyo, Japan, Nov.
2013.

[37] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard. RGBDSLAM v2. https:
//github.com/felixendres/rgbdslam v2, July 2014.

[38] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard. 3D mapping with an RGB-D camera.
IEEE Trans. on Robotics, 30(1):177–187, Feb 2014.

[39] F. Endres, C. Sprunk, R. Kuemmerle, and W. Burgard. A catadioptric extension for RGB-D cameras.
In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2014.

[40] J. Engel, J. Sturm, and D. Cremers. Semi-dense visual odometry for a monocular camera. In Proc. of
the Int. Conf. on Computer Vision (ICCV), Sydney, Australia, Dec 2013.

[41] N. Engelhard, F. Endres, J. Hess, J. Sturm, and W. Burgard. Real-time 3D visual SLAM with a
hand-held camera. In Proc. of the RGB-D Workshop on 3D Perception in Robotics at the European
Robotics Forum, Vasteras, Sweden, 2011.

[42] M. F. Fallon, H. Johannsson, M. Kaess, D. M. Rosen, E. Muggler, and J. J. Leonard. Mapping the
MIT stata center: Large-scale integrated visual and RGB-D SLAM. In RSS Workshop on RGB-D:
Advanced Reasoning with Depth Cameras, July 2012. URL http://projects.csail.mit.edu/stata/.

[43] M. Fischler and R. Bolles. Random sample consensus: a paradigm for model fitting with applications
to image analysis and automated cartography. Commun. ACM, 24(6):381–395, 1981.

[44] A. W. Fitzgibbon. Robust registration of 2d and 3d point sets. Image Vision Comput., 21(13-14):
1145–1153, 2003.

[45] J.-M. Frahm, P. Fite-Georgel, D. Gallup, T. Johnson, R. Raguram, C. Wu, Y.-H. Jen, E. Dunn,
B. Clipp, S. Lazebnik, and M. Pollefeys. Building Rome on a cloudless day. In Proc. of the
Europ. Conf. on Computer Vision (ECCV), volume 6314 of Lecture Notes in Computer Science,
pages 368–381. Springer, 2010.

[46] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In Proceed-
ings of the 25th International Conference on Very Large Data Bases, VLDB ’99, pages 518–529,
San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[47] J. Gluckman and S. Nayar. Rectified Catadioptric Stereo Sensors. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(2):224–236, Feb 2002.

http://ros.org/wiki/rgbdslam
http://ros.org/wiki/rgbdslam
https://github.com/felixendres/rgbdslam_v2
https://github.com/felixendres/rgbdslam_v2
http://projects.csail.mit.edu/stata/

126 Bibliography

[48] Google. https://www.google.com/atap/projecttango/, 2014.

[49] G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, and W. Burgard. Efficient estimation of accurate
maximum likelihood maps in 3d. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), San Diego, CA, USA, 2007.

[50] G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, and C. Hertzberg. Hierarchical optimization on
manifolds for online 2D and 3D mapping. In Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), Anchorage, AK, USA, May 2010.

[51] S. Grzonka, G. Grisetti, and W. Burgard. A Fully Autonomous Indoor Quadrotor. IEEE Trans. on
Robotics, 8(1):90–100, 2 2012.

[52] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. Robust statistics : the approach
based on influence functions. John Wiley & Sons, Inc., 1986.

[53] A. Handa, T. Whelan, J. McDonald, and A. Davison. A benchmark for RGB-D visual odometry,
3D reconstruction and SLAM. In IEEE Intl. Conf. on Robotics and Automation, ICRA, Hong Kong,
China, May 2014.

[54] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University
Press, second edition, 2004.

[55] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D mapping: Using depth cameras for
dense 3D modeling of indoor environments. In Proc. of the Intl. Symp. on Experimental Robotics
(ISER), Delhi, India, 2010.

[56] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D mapping: Using kinect-style depth
cameras for dense 3D modeling of indoor environments. Int. Journal of Robotics Research, 31(5):
647–663, April 2012.

[57] D. Herrera, J. Kannala, and J. Heikkilä. Joint depth and color camera calibration with distortion
correction. IEEE Journal on Pattern Analysis and Machine Intelligence (PAMI), 34(10), Oct 2012.

[58] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard. OctoMap: An efficient
probabilistic 3D mapping framework based on octrees. Autonomous Robots, 2013.

[59] G. Hu, S. Huang, L. Zhao, A. Alempijevic, and G. Dissanayake. A robust RGB-D SLAM algorithm.
In Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
1714–1719, 2012.

[60] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox, and N. Roy. Visual odometry
and mapping for autonomous flight using an rgb-d camera. In Proc. of the Int. Symposium of
Robotics Research (ISRR), Flagstaff, Arizona, USA, Aug. 2011.

[61] P. J. Huber. Robust statistics. 1981.

[62] S. Ito, F. Endres, M. Kuderer, G. D. Tipaldi, C. Stachniss, and W. Burgard. W-RGB-D: Floor-plan-
based indoor global localization using a depth camera and WiFi. In Proceedings of 2014 IEEE
International Conference on Robotics and Automation (ICRA), Hong Kong, China, 2014.

https://www.google.com/atap/projecttango/

Bibliography 127

[63] A. Jain and C. C. Kemp. Behavior-Based Door Opening with Equilibrium Point Control. In RSS
Workshop: Mobile Manipulation in Human Environments, 2009.

[64] A. Jain, H. Nguyen, M. Rath, J. Okerman, and C. C. Kemp. The Complex Structure of Simple
Devices: A Survey of Trajectories and Forces that Open Doors and Drawers. In Proc. of the IEEE
RAS/EMBS Intl Conf. on Biomedical Robotics and Biomechatronics (BIOROB), pages 729–736,
2010.

[65] H. Jin, P. Favaro, and S. Soatto. Real-time 3-d motion and structure of point-features: A front-end
for vision-based control and interaction. In Proc. of the IEEE Intl. Conf. on Computer Vision and
Pattern Recognition (CVPR), 2000.

[66] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental smoothing and mapping. IEEE
Trans. on Robotics, 24(6):1365–1378, Dec. 2008.

[67] Y. Karayiannidis, C. Smith, F. Vina, P. Ögren, and D. Kragic. ‘open sesame!’ - adaptive
force/velocity control for opening unknown doors. In IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pages 4040–4047, 2012.

[68] D. Katz and O. Brock. Extracting planar kinematic models using interactive perception. In Unifying
Perspectives in Computational and Robot Vision, volume 8, pages 11–23. Springer US, 2008.

[69] C. Kerl, J. Sturm, and D. Cremers. Robust odometry estimation for rgb-d cameras. In Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), May 2013.

[70] C. Kerl, J. Sturm, and D. Cremers. Dense visual slam for rgb-d cameras. In Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), 2013.

[71] K. Khoshelham and S. O. Elberink. Accuracy and resolution of kinect depth data for indoor mapping
applications. Sensors, 12(2):1437–1454, 2012.

[72] G. Klein and D. Murray. Parallel tracking and mapping for small AR workspaces. In Proc. IEEE
and ACM Intl. Symp. on Mixed and Augmented Reality (ISMAR), Nara, Japan, 2007.

[73] E. Klingbeil, A. Saxena, and A. Ng. Learning to open new doors. In Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), pages 2751–2757, 2010.

[74] D. Kragic, L. Petersson, and H. I. Christensen. Visually guided manipulation tasks. In Robotics and
Autonomous Systems, 40(2-3):193 – 203, 2002.

[75] J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach to single-query path planning.
In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pages 995–1001, 2000.

[76] R. Kümmerle, B. Steder, C. Dornhege, M. Ruhnke, G. Grisetti, C. Stachniss, and A. Kleiner. On
measuring the accuracy of SLAM algorithms. Autonomous Robots, 27:387–407, 2009.

[77] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g2o: A general framework for
graph optimization. In Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA), Shanghai,
China, 2011.

[78] R. Kümmerle, G. Grisetti, and W. Burgard. Simultaneous parameter calibration, localization, and
mapping. Advanced Robotics, 26(17):2021–2041, 2012.

128 Bibliography

[79] J. Levinson and S. Thrun. Automatic calibration of cameras and lasers in arbitrary environments.
In International Symposium on Experimental Robotics, 2012.

[80] J. Levinson and S. Thrun. Automatic online calibration of cameras and lasers. In Proc. of Robotics:
Science and Systems (RSS), 2013.

[81] B. Limketkai, L. Liao, and D. Fox. Relational object maps for mobile robots. In Proceedings of
the 19th International Joint Conference on Artificial Intelligence, IJCAI’05, pages 1471–1476, San
Francisco, CA, USA, 2005. Morgan Kaufmann Publishers Inc.

[82] D. Lowe. Distinctive image features from scale-invariant keypoints. Intl. Journal of Computer
Vision, 60(2):91–110, 2004.

[83] D. J. C. MacKay. Information Theory, Inference & Learning Algorithms. Cambridge University
Press, New York, NY, USA, 2002.

[84] W. Maddern, A. Harrison, and P. Newman. Lost in translation (and rotation): Rapid extrinsic
calibration for 2D and 3D lidars. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
2012.

[85] R. Maier, J. Sturm, and D. Cremers. Submap-based bundle adjustment for 3d reconstruction from
rgb-d data. In German Conference on Pattern Recognition (GCPR), Münster, Germany, September
2014.

[86] R. M. Martı́n and O. Brock. Deterioration of depth measurements due to interference of multiple
rgb-d sensors. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2014.

[87] W. Meeussen, M. Wise, S. Glaser, S. Chitta, C. McGann, P. Mihelich, E. Marder-Eppstein, M. Muja,
V. Eruhimov, T. Foote, J. Hsu, R. B. Rusu, B. Marthi, G. Bradski, K. Konolige, B. P. Gerkey, and
E. Berger. Autonomous door opening and plugging in with a personal robot. In Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), pages 729–736, 2010.

[88] M. Meilland and A. Comport. On unifying key-frame and voxel-based dense visual SLAM at large
scales. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Tokyo, Japan,
3-8 November 2013. IEEE/RSJ.

[89] F. M. Mirzaei, D. G. Kottas, and S. I. Roumeliotis. 3d lidar–camera intrinsic and extrinsic calibration:
Identifiability and analytical least-squares-based initialization. The International Journal of Robotics
Research, 31(4):452–467, 2012.

[90] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic algorithm configura-
tion. In International Conference on Computer Vision Theory and Application VISSAPP’09), pages
331–340. INSTICC Press, 2009.

[91] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohli, J. Shotton,
S. Hodges, and A. W. Fitzgibbon. Kinectfusion: Real-time dense surface mapping and tracking. In
IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pages 127–136, 2011.

[92] D. Nister. Preemptive RANSAC for live structure and motion estimation. In Proc. of the IEEE
Intl. Conf. on Computer Vision (ICCV), 2003.

Bibliography 129

[93] D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. In Proceedings of the
2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 2,
CVPR ’06, pages 2161–2168, Washington, DC, USA, 2006. IEEE Computer Society.

[94] S. Oßwald, A. Hornung, and M. Bennewitz. Improved proposals for highly accurate localization
using range and vision data. In Proc. of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Vilamoura, Portugal, October 2012.

[95] P. R. Osteen, J. L. Owens, and C. C. Kessens. Online egomotion estimation of rgb-d sensors using
spherical harmonics. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pages
1679–1684, 2012.

[96] G. Pandey, J. McBride, S. Savarese, and R. Eustice. Extrinsic calibration of a 3d laser scanner and
an omnidirectional camera. In 7th IFAC symposium on intelligent autonomous vehicles, volume 7,
2010.

[97] K. B. Petersen and M. S. Pedersen. The Matrix Cookbook.
http://www2.imm.dtu.dk/pubdb/p.php?3274, October 2008.

[98] L. Peterson, D. Austin, and D. Kragic. High-level control of a mobile manipulator for door opening.
In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pages 2333–2338,
2000.

[99] C. Plagemann, C. Stachniss, J. Hess, F. Endres, and N. Franklin. A nonparametric learning approach
to range sensing from omnidirectional vision. Robotics and Autonomous Systems, 58(6):762 – 772,
2010.

[100] F. Pomerleau, S. Magnenat, F. Colas, M. Liu, and R. Siegwart. Tracking a depth camera: Parameter
exploration for fast icp. In Proc. of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2011.

[101] M. Quigley, S. Batra, S. Gould, E. Klingbeil, Q. Le, A. Wellman, and A. Ng. High-accuracy 3d
sensing for mobile manipulation: Improving object detection and door opening. In Proc. of the
IEEE Int. Conf. on Robotics & Automation (ICRA), pages 2816–2822, 2009.

[102] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press,
2005.

[103] J. Roewekaemper, C. Sprunk, G. Tipaldi, C. Stachniss, P. Pfaff, and W. Burgard. On the position
accuracy of mobile robot localization based on particle filters combined with scan matching. In
Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012.

[104] E. Rosten and T. Drummond. Machine learning for high-speed corner detection. In Proc. of the
Europ. Conf. on Computer Vision (ECCV), volume 1, pages 430–443, May 2006.

[105] N. Roy and S. Thrun. Online self-calibration for mobile robots. In Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), volume 3, pages 2292 – 2297, Detroit, MI,
USA, 1999.

[106] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: an efficient alternative to SIFT or SURF.
In Proc. of the IEEE Intl. Conf. on Computer Vision (ICCV), volume 13, 2011.

http://www2.imm.dtu.dk/pubdb/p.php?3274

130 Bibliography

[107] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm. In Proc. of the Intl. Conf. on
3-D Digital Imaging and Modeling, Quebec, Canada, 2001.

[108] R. B. Rusu, W. Meeussen, S. Chitta, and M. Beetz. Laser-based Perception for Door and Handle
Identification. In Proc. of the Intl. Conf. on Advanced Robotics (ICAR), 2009.

[109] D. Scaramuzza. Omnidirectional Vision: from Calibration to Root Motion Estimation. PhD thesis,
Swiss Federal Institute of Technology Zurich (ETHZ), February 2008.

[110] A. Segal, D. Haehnel, and S. Thrun. Generalized-ICP. In Proceedings of Robotics: Science and
Systems, 2009.

[111] C. Sprunk, G. D. Tipaldi, A. Cherubini, and W. Burgard. Lidar-based teach-and-repeat of mobile
robot trajectories. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
2013.

[112] F. Steinbruecker, J. Sturm, and D. Cremers. Real-time visual odometry from dense rgb-d images.
In Workshop on Live Dense Reconstruction with Moving Cameras at the Intl. Conf. on Computer
Vision (ICCV), 2011.

[113] H. Strasdat, J. M. M. Montiel, and A. Davison. Scale drift-aware large scale monocular slam. In
Proceedings of Robotics: Science and Systems, Zaragoza, Spain, 2010.

[114] J. Sturm, A. Jain, C. Stachniss, C. C. Kemp, and W. Burgard. Operating articulated objects based
on experience. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pages
2739–2744, 2010.

[115] J. Sturm, C. Stachniss, and W. Burgard. A probabilistic framework for learning kinematic models
of articulated objects. Journal on Artificial Intelligence Research (JAIR), 41:477–526, 2011.

[116] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. http://vision.in.tum.de/data/datasets/
rgbd-dataset, October 2012.

[117] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for the evaluation
of RGB-D SLAM systems. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), Vilamoura, Portugal, 2012.

[118] A. Teichman, S. Miller, and S. Thrun. Unsupervised intrinsic calibration of depth sensors via SLAM.
In Proceedings of Robotics: Science and Systems, 2013.

[119] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.

[120] J. Trinkle and R. Milgram. Complete path planning for closed kinematic chains with spherical joints.
International Journal of Robotics Research, 21(9):773–789, 2002.

[121] S. Umeyama. Least-squares estimation of transformation parameters between two point patterns.
IEEE Transactions on Pattern Analysis and Machine Intelligence, (13), 1991.

[122] P. Wegner. A technique for counting ones in a binary computer. CACM, 3(5):322–322, May 1960.

http://vision.in.tum.de/data/datasets/rgbd-dataset
http://vision.in.tum.de/data/datasets/rgbd-dataset

Bibliography 131

[123] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and J. McDonald. Kintinuous: Spatially
extended KinectFusion. In RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras,
Sydney, Australia, Jul 2012.

[124] T. Whelan, H. Johannsson, M. Kaess, J. Leonard, and J. McDonald. Robust real-time visual odom-
etry for dense rgb-d mapping. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
Karlsruhe, Germany, May 2013.

[125] T. Whelan, M. Kaess, J. Leonard, and J. McDonald. Deformation-based loop closure for large scale
dense RGB-D SLAM. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
2013.

[126] Wikipedia. Line-line intersection — wikipedia, the free encyclopedia. http://en.wikipedia.org/w/
index.php?title=Line-line intersection&oldid=541501982, 2013. [Online; accessed 4-March-2013].

[127] C. Wu. SiftGPU: A GPU implementation of scale invariant feature transform (SIFT). url-
http://cs.unc.edu/ ccwu/siftgpu, 2007.

[128] Y. YAGI. Omnidirectional sensing and its applications. IEICE Transactions on Information and
Systems, 82(3):568–579, 1999.

[129] Y. Yang and O. Brock. Elastic roadmaps - motion generation for autonomous mobile manipulation.
Autonomous Robots, 28(1):113–130, 2010.

[130] M. Zeng, F. Zhao, J. Zheng, and X. Liu. Octree-based fusion for realtime 3D reconstruction. Graph-
ical Models, 2012.

[131] Z. Zhang. Parameter estimation techniques: A tutorial with application to conic fitting. Image and
Vision Computing Journal, 15(1):59–76, 1997.

[132] J. Zienkiewicz, R. Lukierski, and A. J. Davison. Dense, auto-calibrating visual odometry from a
downward-looking camera. In Proc. of the British Machine Vision Conference (BMVC), 2013.

http://en.wikipedia.org/w/index.php?title=Line-line_intersection&oldid=541501982
http://en.wikipedia.org/w/index.php?title=Line-line_intersection&oldid=541501982

	Table of Contents
	Introduction
	Key Contributions
	Open Source Software
	Publications
	Collaborations
	Notation

	Background
	Probabilistic Estimation
	Maximum a Posteriori
	Maximum Likelihood

	Least Squares
	Maximizing Probabilities by Error Minimization
	Linear Least Squares
	Non-Linear Least Squares

	Regression
	Linear Regression
	Locally Weighted Regression
	Non-Parametric Regression

	Robust Estimation Methods
	Robust Kernels
	Random Sample Consensus

	3D SLAM with an RGB-D Camera
	Sparse RGB-D SLAM
	Sensor
	SLAM Frontend: Motion Estimation
	Visual Features
	Registration
	Visual Odometry and Loop Closure Search

	SLAM Backend: Graph Optimization
	Map Representation

	A Benchmark for RGB-D SLAM Approaches
	RGB-D Benchmark Datasets
	Error Metric
	Experimental Setup

	Improved Feature Detection and Matching
	Keypoint Detection
	Feature Matching

	Exploiting the Graph Neighborhood for Loop Closure Search
	Statistical Graph Pruning for Increased Robustness
	A Method for Verifying the Registration of Depth Images
	Environment Measurement Model
	Robust Hypothesis Testing
	Implementation and Evaluation

	Related Work
	Conclusion

	Multiple View RGB-D Perception
	SLAM with Multiple RGB-D Sensors
	A Catadioptric Extension for RGB-D Cameras
	Design
	SLAM with the Catadioptric RGB-D Sensor

	Calibration of Multiple RGB-D Sensors via SLAM
	Calibration of the Catadioptric RGB-D Sensor
	Reduction to Three Degrees of Freedom
	Reduction to Two Degrees of Freedom
	Experimental Evaluation

	Related Work
	Conclusions

	Interactive Perception and Manipulation of Doors
	Articulated Object Dynamics
	Rotational Motion
	Linear Motion

	Perception of Doors with a Depth Sensor
	Estimating the Door State
	Estimating the Hinge Position
	Learning the Dynamics

	Interactive Learning of the Dynamics from Tactile Perception
	Experimental Evaluation
	Experimental Setup
	Learning from Human Demonstration
	Interactive Experimentation

	Related Work
	Perception of Doors
	Manipulation of Doors

	Conclusion

	Conclusions
	Detailed Benchmarking Results
	Dataset with Public Ground Truth
	Benchmark Dataset Sequences

