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Abstract

In this thesis, we present a new approach to unsupervised discovery of object
classes in 3D range scans. Our assumption is that a real-world scene is com-
posed of a finite set of objects, each related to exactly one object class, plus
irrelevant background structure. We do not require prior knowledge about the
set of possible object classes other than that objects from the same class are
more similar in shape than those from different classes.

We propose similarity-based clustering and classification of objects using the
distribution of discretized local free-form surface signatures. In contrast to
common methods, our approach does not rely on manually created models or
training data. Instead, the class models will be discovered from the similarities
in the feature distributions of the segmented range data. To learn the model,
we apply latent Dirichlet allocation (LDA), a probabilistic framework for topic
modeling. We show that LDA successfully learns a partitioning of the feature
distributions into groups based on similarity. To evaluate the performance of
this approach, we carry out experiments with two data sets of differing complex-
ity and compare the results to an approach based on hierarchical clustering of
the feature distributions. In our experiments, we demonstrate that the results
based on LDA are superior to those based on hierarchical clustering, in partic-
ular for the more complex data set, containing similar object classes, varying
object appearances and complex objects.





Zusammenfassung

In dieser Arbeit wird ein neuer Ansatz zur unüberwachten Aufteilung von 3D-
Objektdaten in Gruppen vorgestellt. Dieser Ansatz wird auf Szenen angewendet,
die mit einem Laserscanner abgetastet wurden. Wir gehen davon aus, dass die
Szenen aus einer Menge von Objekten bestehen, sowie aus einem für unsere
Zwecke irrelevantem Hintergrund. Die Objekte gehören dabei jeweils genau
einer Bedeutungsklasse an. Der Ansatz bedarf keiner Information über die
Eigenschaften der Klassen, es wird jedoch vorausgesetzt, dass die Objekte einer
Klasse sich in ihrer Form ähnlicher sind, als Objekte unterschiedlicher Klassen.

Der vorgeschlagene Ansatz basiert auf lokalen Oberflächenmerkmalen, die
beliebige Formen charakterisieren können. Die Merkmale werden diskretisiert
und segmentweise zu Merkmalsverteilungen zusammengefasst. Diese werden
in Gruppen aufgeteilt, ohne dass gruppenspezifische Informationen bereitgestellt
werden müssen. Dieses Ziel wird unter Verwendung von “latent Dirichlet alloca-
tion” (LDA), eines statistischen Modells zur Gruppierung von diskreten Daten,
erreicht. Zur Evaluierung der Methode werden Experimente mit verschiedenen
Datensätzen vorgestellt. Die Datensätze unterscheiden sich dabei sowohl hin-
sichtlich der Komplexität der Objekte, als auch im Schwierigkeitsgrad bezüglich
der Ähnlichkeit zwischen den Objektklassen und dem Variationsgrad innerhalb
der Klassen. Im Vergleich mit experimentellen Ergebnissen, die unter Verwen-
dung von hierarchischem Clustering erzielt wurden, erreichen wir bessere Re-
sultate; sowohl hinsichtlich der Anzahl korrekt gruppierter Segmente, als auch
bezüglich der Robustheit gegenüber Variationen in der Merkmalsextraktion.
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1 Introduction

A skill usually taken for granted by humans is the ability to recognize what
we perceive with any of our senses. We will recognize things we saw, heard,
smelled, tasted or felt before, mostly limited by our ability to memorize. If some-
thing has not been perceived before, we reliably relate our perceptions to sim-
ilar things encountered in the past. This allows us to apply our experience
with something similar to the new object. This capability is crucial for even the
simplest tasks.

Unfortunately, the identification or classification of objects in sensor informa-
tion is a very hard task for computers, if the input data does not follow a fixed
set of rules (e.g. recognizing block letter with fixed font and size). For most ob-
jects we encounter and deal with in our everyday life, there are no definite rules
of appearance. But although tasks, such as the identification of cars in pho-
tographs, poses no problems to us, we are not able to describe the subconscious
process that lets us distinguish different classes of objects.

And while the state of the art in computer based object classification has
progressed remarkably in recent years, our own superior capabilities show that
much room is left for improvement.

Object recognition is of particular importance in the field of autonomous mo-
bile robotics. Many tasks we would like to delegate to robots require the actor
to distinguish between different kinds of objects. Such tasks can range from
applications in service robotics, e.g a catering robot that has to identify specific
kinds of tableware, to industrial applications where the robot has to distinguish
a set of arbitrary products.

An additional benefit if objects can be identified from observation data is, that
they can also be segmented from the rest of the image. This is especially useful
in 2D images, when spatial information about the objects is limited. Yet it is also
useful for automatic segmentation of 3D images where objects are connected
or adjacent. Here clustering on spatial distance measurements would not be
applicable. And even though object classification might appear to be easier
for 3D range data than for 2D image data because the depth is known for all
measurements, there is the lack of color information and data is often noisy and
sparse. Figure 1.1 shows one example of an 3D scan. Objects of interest have
been labeled with a color consistent to the object’s class.

Further applications for recognition arise due to the increasing usage and
availability of 3D models on the internet. Analog to image search engines, that
can find and group images based on similarity the need for grouping and finding
3D data based on similarity, will grow with the amount of models available.
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1 Introduction

Figure 1.1: Example 3D range data with manually colored objects

In general, the first step for object recognition is to transform the data to a fea-
ture space. Instead of working on the raw data—a point cloud or a mesh—most
recognition approaches extract features, that describe the characteristic object
properties as concisely as possible. The classification is then performed solely
upon those features. To allow for efficient comparison between data sets, most
features reduce the data to a much simpler representation. There are many pro-
posals for features differing in the characteristics described, in dimensionality
and whether the whole data is described or only a local subset. Another impor-
tant property of a feature type is, whether it can represent all kinds of shapes or
just a subset, such as ellipsoids. The latter type is usually of considerably lower
complexity than free-form feature types, but only suitable to describe certain
kinds of objects.

From those features a model, can be built, against which new data can be
compared and assessed. This thesis uses and enhances a suitable 3D shape
descriptor for the representation of free-form objects and evaluates classifica-
tion based on these representations. We will use the distribution of the features
to calculate the class(es) the data belongs to. This is visualized in Figure 1.2,
where the distributions of imaginary features are shown. We know the distribu-
tions for the object classes human and chair. Given a new distribution we need
to decide what class it belongs to.

An important distinction between current classification methods is the way
the models of the objects or classes to identify are created. The model can
be engineered manually, learned from a set of labeled example data (which is
called supervised learning) or learned from unlabeled data using an unsuper-
vised clustering algorithm. While the former two categories have the advantage,

14



1.1 Goal

Figure 1.2: With features that only distinguish between round, flat and angular surfaces,
we can estimate the type of object by analyzing the distribution of the feature

that detailed prior knowledge about the objects to identify can be included eas-
ily, the effort for manually building the model or labeling a significant amount
of training data becomes infeasible with increasing model complexity and larger
number of objects to identify. Furthermore, in applications where the objects
to distinguish are not known beforehand, a robot needs to build the model by
means of which it classifies the data on its own.

Unsupervised classification can be accomplished, e.g. by extracting features
for which a distance measurement can be defined. The features are then as-
signed to classes upon a criterion such as minimizing the distance between
features of the same class, while maximizing the distances to features of other
classes. The main difficulty is then to find features and distance measures that
reflect the information about the similarity of the underlying data.

Since data usually is structured in units, e.g. of separate images or 3D scans,
and assuming that correlated features will mostly occur together it is possi-
ble to find classes upon the co-occurrence of features. This renders a feature
specific distance measurement unnecessary, as long as we can decide whether
two features are equal—or similar enough. There have been various models
to describe such a problem in the text domain, where co-occurrences of words
are regarded to find common topics. In this thesis we use a recent topic mod-
elling approach—latent Dirichlet allocation—for unsupervised discovery of object
classes, based on surface features.

1.1 Goal

The goal of this work is to develop an approach for classification of objects from
3D range data. Similar objects should be identified as belonging to the same
class, and vice versa, different types of objects should be labeled distinctly.

15



1 Introduction

Figure 1.3: We want to organize a set of distributions of unknown origin (left) into classes
based on similarity

Furthermore we will restrict our methods to not rely on labeled training data
or a predefined model that will be matched, but the presented method should
find the model from the data itself. So, the first problem we deal with is the
mentioned transformation of the data to a suitable feature space, to generate
meaningful feature distributions with respect to the represented objects. The
second problem is the grouping of data sets into classes of objects and the
determination of the distribution over the feature distributions that characterize
the class. This latter task is illustrated in Figure 1.3.

1.2 Outline

This thesis is structured as follows: After this introduction, Chapter 2 presents
work that is related to our approach in methodology or objectives. Chapter 3
describes the advanced methods we use for learning, estimation and feature
extraction. Subsequently we present our approach in Chapter 4, including data
preprocessing, feature extraction and model generation. In Chapter 5 the exper-
iments conducted and the results found are described in great detail, including
the equipment we used and objects scanned. The last chapter summarizes our
findings and gives an outlook on future work and possible extensions to our
work.
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2 Related Work

Object recognition is a classic problem that has been well studied for over 60
years. Although it was first thought to be an easily accomplished task, it can
not be considered a solved problem today. The approach presented in this the-
sis is based on a lot of preceding research and related to much of the work
that is currently undertaken in the fields of computer vision (including 2D as
well as 3D) and machine learning. This chapter is dedicated to the previous
work we build up on and to the work of others that is similar in some way.
For the latter we will shortly clarify the points of distinction to our work. The
research area this work is embedded in, is illustrated in Figure 2. On top, ob-
jectives are shown that are related to our work. In clustering—also known as
segmentation— the goal is to assign the data to a finite number of classes, such
that criteria of interest are shared by the data within a class, but differ among
classes. Hence, the properties that define each cluster have to be selected. A
common criterion in clustering is spatial proximity. In this work, we cluster
segments of 3D range data, based on their similarity in shape. This allows us
to create groups of similar objects. Recognition is similar to clustering, in that
data is classified on particular criteria, e.g. similarity in shape or appearance.
Usually, in recognition the definition of the class that shall be recognized is ei-
ther known beforehand or is learned by positive and negative examples. The
definition of the class is also referred to as its model. Recognition can also
be applied using the cluster definitions found by clustering as models. In this
case, the cluster definitions need to be applicable to unseen data. In retrieval,
no model needs to be learned. Here, given some set of data, the task is to find
a corresponding—usually the most similar—data set from a database. Applica-
tions include image search by similar appearance [Siggelkow et al., 2001] and
retrieval of 3D models, based on shape [Shilane et al., 2004]. If the database
contains data with labels, this can also be used for recognition, by classifying
the “search data”, e.g. with the label of the nearest neighbor. In reconstruction,
the goal is to combine sets of partial data to a complete data set. This can be
used to construct models for recognition tasks from partial views, for instance
due to (self) occlusion. The differences, with regard to prior knowledge about the
class model are shown explicitly in the bottom right part of Figure 2. Section 2.2
presents current research with the mentioned goals.

At the bottom left of the illustration, data commonly encountered in prob-
lems in robotics and machine learning is shown. Next to it, the task of feature
extraction is shown. Feature extraction is a common preprocessing step, if clas-
sification is based on shape or appearance. Features aim to efficiently capture
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2 Related Work

Figure 2.1: Illustration of related research areas.

characteristics of interest. Ideally a feature is invariant to variations that are
irrelevant to classification. There is a lot of research in this area. An overview
is given in Section 2.1.

2.1 Data and Feature Extraction

As language directly encodes semantic information in words, feature extraction
in the text domain is mostly reduced to the task of suppressing words with no
or little semantic value. This is usually done using lists of “stop words”, which
are deleted from the documents beforehand. On the contrary, the extraction of
features with representive information about objects in 2D or 3D data is a much
harder task and targeted by a lot of current research.

3D Data and Shape Features

Three dimensional data can be created manually, e.g using CAD software or
computed from data, such as in construction of protein models. In the field
of robotics, 3D data is mostly captured using time of flight sensors, such as
laser range scanners, specialized cameras, radar or even sonar. Other possi-
bilities include 2D sensors, where the third dimension is reconstructed, i.e. in
multiple view computer vision. Unfortunately, these capturing methods yield
rather sparse data, when compared with high resolution 2D imaging processes.
Only in recent years, laser range scanners have become available that provide
sufficient data density for applications such as object recognition from shape.

18



2.1 Data and Feature Extraction

Usually this provides us with data in form of a point cloud or a polygonal mesh.

In contrast to artificially created data, two scans cannot be matched directly—
even if they contain the same object. On the one hand the input data is not a
perfect description of the scanned objects. Problems include smoothness (i.e.
there is only a finite number of points/polygons) and precision. Therefore it is
crucial to accommodate the matching process to discrete and erroneous input
data, by using matching techniques such as the iterative closest point algo-
rithm. Also incompleteness of the data, e.g. because of (self-) occlusion can
rarely be avoided and has to be considered in the matching process. On the
other hand, differences due to translation and rotation have to be disregarded,
as the position of the object relative to the sensor is of no regard to the objects
identity or class.

For these reasons a basic step in object recognition systems is the extrac-
tion of features which characterize the objects sufficiently. This allows us to
efficiently distinguish between what is considered the same and what is not.
The features should be robust to noisy data and—ideally—invariant under a
similarity transform.

Important measures for such features are ambiguity, conciseness and unique-
ness [Brown, 1981]. Ambiguity measures how exact the feature represents the
data, i.e. the level of variation in the data that is mapped to the the same feature
representation. Conciseness is a measure of the compactness of representation
and therefore closely related to the efficiency with which operations such as
matching can be performed. A feature is unique if there is only one feature rep-
resentation for given object data. Non-uniqueness is usually introduced during
the construction of the object, e.g. by aliasing.

Early works mostly segment and characterize point clouds or mesh data by
fitting parameterized basic geometric shapes such as planes, spheres, quadrics,
etc to the data (see [Hoover et al., 1996] for an overview). The parameter set that
results in the best fit is then used to characterize the objects shape. This pro-
ceeding yields very compact, yet ambiguous, features with particular difficulties
to represent complex shapes.

Therefore the paradigm has shifted towards free-form surface representa-
tions. Spin images are a very popular kind of surface descriptor in this area.
Spin images use the surface normal to devise a 2D coordinate system that is
invariant under similarities and describe the surface of the object relative to
this coordinate system. It was introduced by Johnson [1997] and has been
applied successfully to supervised object recognition tasks in [Johnson and
Hebert, 1996], [Johnson and Hebert, 1998], [Johnson and Hebert, 1999]. In
this thesis, we apply spin images to our task and also propose an enhanced
surface descriptor, which is very similar to spin images. We describe spin im-
ages in detail in Section 3.6. Our approach is described in Section 4.3. The
basic difference is, that instead of storing a description of relative coordinates
of the surface, we store the angle between the surface normals of two points.

19



2 Related Work

Another proposal of a shape descriptors are presented in Ruiz-Correa et al. [2003],
which describes a similar per-point-feature for recognition of object classes. It
relies on symbolic labels that are assigned to regions. The symbolic values,
however, have to be learned from a labeled training set beforehand. Stein and
Medioni [1992] present a point descriptor that also relies on surface orienta-
tions. It focuses on the surface normals in a specific distance to the described
point and models their change with respect to the angle in the tangent plane of
the query point.

For more information on 3D shape descriptors the reader is refferred to [Bus-
tos et al., 2005] and [Campbell and Flynn, 2001].

2D Data and Appearance Features

Images are considerably easier to capture and process and visualize than 3D
data. Image data is ubiquitous in our everyday life and huge amounts of im-
age data is available through the internet. Object classification, identification
and tracking in images are thoroughly studied problems and experience a lot of
current research. Most current methods rely on feature detectors to find loca-
tions of interest and the subsequent extraction of features from these locations.
The features are then used in learning algorithms, to find the correspondence
between features and objects. As in this work, the feature distribution of an
image often is considered be a “bag of words”, i.e. the spatial distribution of
the features is disregarded, to allow for a simpler representation [Csurka et al.,
2004], [Zhang et al., 2007], [Bosch et al., 2006].

As for 3D data, there is a huge variety of proposed features. Again, invariance
to translation and rotation (around the principal axis) are required. Due to the
loss of depth information 2D features should also be invariant to scale, as it
is dependent on the distance of the object to the camera, and in the ideal case
to perspective transformations. The former is often achieved using pyramids,
i.e. extracting the features from the image in several scale levels. The latter,
however, can only be approximated by robustness to affine transformations.
Further important properties are robustness to different lighting conditions and
to noise. Noise is usually dealt with by convolution of the image with a Gaussian
function. Popular feature proposals include SIFT [Lowe, 1999], histogram of
gradients[Dalal and Triggs, 2005] and SURF [Bay et al., 2008]. A comparison of
2D image features can be found in [Mikolajczyk and Schmid, 2005].

2.2 Classification Approaches

Classification on 3D Data

Even though laser range scanners are very accurate, range data is always sub-
ject to small measurement noise. Features extracted from 3D data cannot per-

20



2.2 Classification Approaches

fectly describe an object with respect to ambiguity and uniqueness. Also, spe-
cific objects to be identified are usually subject to partial (self-) occlusion and
might have a varied appearance. When a class of objects should be recognized
these variations are part of the task and have to be considered. To accom-
plish recognition advanced techniques are necessary. As mentioned before, ob-
ject recognition approaches differ in the process of model creation. Steder et

al. [2009], for instance, use a reference scan segment as model and succeed in
matching it to unseen data. An interesting approach to object recognition, using
probabilistic techniques as well as histogram matching , has been presented in
[Hetzel et al., 2001]. The features used are particular low dimensional. Unfor-
tunately the experiments have only been done on synthesized data. In contrast
to our work, a complete model of the exact object to recognize is assumed to be
available. A lot of research focuses on supervised algorithms that are trained to
distinguish objects or object classes on a labeled set of training data. Anguelov
et al. [2005] and Triebel et al. [2006] use supervised learning to classify objects
and associative Markov networks to improve the results by explicitly consid-
ering relations between the class predictions. In contrast to the mentioned
approaches, our goal is to find the object classes by the similarity of the data
itself, such that no human supervision for model selection is necessary.

An approach to unsupervised segmentation of adjacent rectangular boxes in
3D scans has been presented in [Schroll, 2008]. Here, the point cloud is pro-
jected to a 2D height map. This height map is segmented on behalf of height
and gradient using Markov random fields.

The work of Ruhnke [2008] proposes an approach to unsupervised model
learning of models in 3D range data. His focus lies on reconstructing a full 3D
model by registration of several partial views, while our approach focuses on
the clustering of objects based on similarity. Ruhnke works on range images,
from which he selects small patches with an region of interest detector. The
patches are used to find candidates for the transformation of the partial views
to a common coordinate system. Several heuristics are used to select the best
transformation.

Streicher [2008] presents a method, aimed at model retrieval in databases of
3D models. In contrast to our work, Streicher first determines points of inter-
est for each model, then clusters the features from these points into codebook
entries. The features used in his work include spherical harmonics [Fehr and
Burkhardt, 2007] and light field descriptors [Chen et al., 2003]. Model retrieval
is then done with a nearest neighbor search, based on histogram matching as
distance function.

Triebel et al. [2007] presented an approach to supervised learning of 3D mod-
els, combining nearest neighbor classification with associative Markov networks
to overcome limitations of the individual methods. The approach also uses spin
images as surface descriptors. The method requires a training data set with the
descriptor and the class label for all point measurements. From this data, the
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2 Related Work

classification algorithm is trained to predict the class of unseen data.

Classification on Text Data

The main focus of research on text data is information retrieval, but also topic
modelling, i.e. semantic clustering of documents. In the domain of unsuper-
vised classification of text documents, several models that greatly surpass mere
counting of words have been proposed. Recent successful methods include
probabilistic latent semantic indexing (PLSI) [Hofmann, 1999] and latent Dirich-
let allocation (LDA) [Blei et al., 2003] that both use the co-occurrence of words
in a probabilistic framework to group words into topics. As shown by Girolami
and Kabán [2003], LDA supersedes PLSI; the latter can be seen as a special
case of LDA, using a uniform prior and using maximum a posteriori estimation
for topic selection.

Classification on 2D Data

A common approach to locate objects in images is the sliding window method
[Bosch et al., 2007], [Ferrari et al., 2008], [Rowley et al., 1996], [Fritz and
Schiele, 2008]. First a classification algorithm is trained with positive and neg-
ative examples. To locate an object in an image, a rectangular bounding box
is “slid” over the image and a classification algorithm, such as a support vec-
tor machine or k-nearest neighbor, is applied in every position of the rectangle,
deciding whether the object is located in this position or not. Unless the po-
sitions and sizes of the rectangles are rigorously restricted, this approach is
extremely expensive computationally. Lampert et al. [2008] therefore proposed
a new framework, that allows to efficiently find the optimal bounding box with-
out explicitly applying the classification algorithm to all possible boxes.

Bosch et al. [2006] instead uses PLSI for unsupervised discovery of object
distributions. These object distributions are then classified using a k-nearest
neighbor classifier. In contrast to our approach, this classifies the whole scene,
instead of the contained objects individually. LDA also has been successfully
used in recent research for unsupervised categorization of objects in images.
While usually few text documents contain a huge mixture of topics, a problem
encountered in these papers is that images often show objects of many different
categories. Wang and Grimson [2007] therefore introduce segmentation into the
LDA model. Fritz and Schiele [2008] proposes the sliding window approach on a
grid of edge orientations to evaluate topic probabilities on subsets of the whole
image. In [Philbin et al., 2008] the model is enhanced such that documents
have explicit places for different topics.
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3 Fundamentals

This chapter deals with fundamental methods applied in this thesis. Firstly, the
Dirichlet distribution will be explained briefly, as it will be a key factor of the
learning algorithm described later and the effects of its parameterization will be
of concern in later chapters. Secondly, an introduction to the approximation of
a probability distribution using Markov chain Monte Carlo with Gibbs sampling
is given. Thirdly, we discuss latent Dirichlet allocation, a recent approach to
topic modelling that is used for our classification purposes. In Section 3.4 we
give an introduction to clustering methods. Following, the principal components
analysis is explained briefly, as we use it to find the surface normals in feature
generation. Finally we introduce spin images, a data level representation of
surface patches which will be used as input to the learning algorithm.

3.1 Dirichlet Distribution

In this thesis, we use multinomial probability distributions to represent the
distribution of discrete surface features for an underlying object class. Further-
more we describe the mixture of object classes within a data set by a multino-
mial probability distribution. A simple example of a multinomial distribution
are the proportions of objects in data sets, e.g. 3D scans or a segments thereof.
Having object classes “human”, “box” and “chair” we want to know how often
each object class occurs. Assume we are sequentially given several such data
sets and want to know the probability for each class. We might have an intu-
ition of the distribution before seeing any of the data sets, e.g. because we know
that the data sets were captured in an office at night, so there should be more
chairs than humans. Yet, with every data set we want to update our belief to
incorporate the observations.

Having a prior belief and updating it according to subsequent observations is
a common setting in Bayesian statistics. After each observation we calculate the
probability distribution for the next observation (the posterior distribution) from
the prior belief and the previous observations. For this purpose it is important
that the prior distribution can be easily updated to incorporate observations. In
mathematical terms this means that we want to express our prior belief as a
distribution P (θ) that is conjugate to the likelihood of our observations P (x|θ),
i.e. the posterior distribution

P (θ|x) =
P (x|θ)P (θ)

∫
P (x|θ)P (θ)dθ

(3.1)
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3 Fundamentals

Figure 3.1: Dirichlet Distributions for Different Choices of α. Picture taken from Wikipedia.

is in the same family as P (θ) itself. For multinomial distributions the conjugate
prior is the Dirichlet distribution, a distribution over multivariate probability
distributions, i.e. a distribution assigning a probability density to every possible
multivariate distribution.

For the multinomial variable x = {x1, . . . , xK} with K exclusive states xi the
Dirichlet distribution is parameterized by a vector α = {α1, . . . , αK}. The el-
ements of α can be thought to represent αi − 1 observations of state i. The
distribution can then be calculated by

f(x) =
Γ
(∑K

i=1 αi

)

∏K
i=1 Γ(αi)

︸ ︷︷ ︸

Normalization

K∏

i=1

xαi−1
i ,

where Γ(·) is the standard gamma function. Note that the elements of x have
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to be positive and sum up to one. Using the Dirichlet as prior for our earlier
example, we could express the prior e.g. by α = {2, 3, 4}, giving lower proba-
bility to the class “human”, than to “box” and “chair”. The resulting Dirichlet
distribution Dir(α) is shown in the lower left plot in Figure 3.1. Every corner
of the triangle represents a class. The corners itself represent the distributions
where only the respective class occurs. The center point represents the uniform
distribution over all classes. The triangle itself is the n-simplex containing all
points where the n + 1 coordinates of all axes sum up to one (which is required
for the multivariate distribution).

After observing one human, four boxes and a chair the posterior distribution
would become Dir({3, 7, 5}) and is shown in the upper right plot in Figure 3.1.
This result is easily obtained by adding the observation counts to the elements
of α. The same result would of course occur when calculating the posterior with
Equation 3.1.

In our use of the Dirichlet distribution, however, we restrict ourself to the
subset of symmetric distributions with αi = αj for all i and j. Thus, we ignore
the possibility to have different probabilities for the classes. Our use will focus
on drawing samples from Dirichlet distributions that assign high probabilities
only to the outer regions, i.e. distributions that favor a subset of classes instead
of a mixture. This is achieved by choosing the αi to be in the range (0, 1). The
resulting distribution will be a valley with peaks at the corners. Thus, when
sampling a multinomial probability distribution from the Dirichlet, we expect to
draw a distribution that assigns high probability to one or few of the classes and
very low probability to the rest. In our example above, we therefore expect to
either see only humans, only chairs or only boxes—but would be very surprised
to see all of them.

The calculation of the expected probability distribution over the states and its
variance can be easily performed based on the values in α. With α0 =

∑

j αj, the
expected probability for a state i is given by αi/α0. The variance of the probability
for state i is given by αi(α0 − αi)/(α

2
0(α0 + 1)). Thus the variance increases with

lower αi. Note that these are the same calculations as for the beta distribution,
and in fact beta distributions are a special case of a Dirichlet distribution with
a two-dimensional parameter vector α = {α1, α2}.

3.2 Markov Chain Monte Carlo

Computing a complex probability distribution often proves to be computational
infeasible, for instance if it involves integrals that cannot be solved analytically
but have to be calculated numerically. However, in most cases it is sufficient
to approximate the target distribution instead of computing it exactly. There
are many approaches to the approximation of probability distributions. We will
present a Markov chain Monte Carlo technique in the following.
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Figure 3.2: Graphical illustration of a Markov chain. The states αi depend only on
their direct predecessor and the transition probability function T i−1: P (αi) =
∑

αi−1 P (αi−1)T (αi−1, αi)

Markov chain Monte Carlo methods approximate a target distribution by con-
structing a Markov chain and subsequently sampling new states for the next
chain link with a Monte Carlo transition function. The transition function leads
to the target rule, i.e. has the target distribution as equilibrium distribution.

In a Markov chain, every chain link represents one state of all the variables.
The chain is assumed to obey the Markov property, so the assignments in ev-
ery step are dependent on the assignments of the last step, yet independent of
everything before that. Hence the new state αi is selected according to a prob-
abilistic transition function T (αi−1, αi) that depends only on the previous state.
This assumption simplifies the algorithm considerably. Figure 3.2 illustrates a
Markov Chain.

To converge to the target distribution, when sampling the next state of the
variables, the transition function needs to prefer states that are more probable
given the model. There are several Monte Carlo methods to do this. Commonly
used algorithms for such a setting are Metropolis-Hastings and its special case
Gibbs Sampling. Metropolis-Hastings updates the states of the variables se-
quentially. Each time, the quality of the new state is tested with respect to its
probability. If the quality is unchanged or increased, the new state is accepted
immediately. Otherwise it is accepted only with a probability that decreases ex-
ponentially with the decrease of quality. If rejected, the new state is resampled
from the set of states. This is very efficient for systems with few states and when
many states are either rejected or a step towards the target distribution. There
is a drawback for situations where many of the new states are neither bad nor
good. In this case variables might go through many of these states, until one is
selected that is advantageous. In our setting this can slow convergence, if a 3D
scan or a segment thereof contains few of the many object classes in the corpus.
The problem occurs, for instance, with a variable of which the state corresponds
to neither of the class labels in the belonging scan. It will be switched to any of
the other labels randomly, as none will be worse than the current one.

In Gibbs sampling this procedure is changed. The new state for each individ-
ual variable is sampled successively. However, the probability distribution over
the possible new states (i.e. the object class labels) of the variable is calculated,
conditioned on the current state of the other variables. The new state is then
sampled from this discrete distribution. Therefore the new state of a variable
is biased towards a better (i.e. more probable given the last state) assignment,
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3.3 Latent Dirichlet Allocation

given the current state. As described above, this is advantageous in settings
with many states that are equally good than the previous state. The draw-
back here is the expense of precomputing the probability of all possible new
states and thus the conditional probability distribution should be efficiently
computable . In settings where the state of a variable is strongly dependent on
the other variables, the difference between the computed selection probabilities
and the uniform sampling-with-rejection in Metropolis-Hastings may pay off. In
our case the strong interdependencies of the variables are due to the Dirichlet
priors preferring fewer object classes within one scan segment and equal class
labels for equal data items (see Section 3.3).

In order that the chain converges to the target distribution, two requirements
have to be met by the transition function (see [Bishop, 2006]):

• The target distribution needs to be invariant under the transition function

• The proposal distribution needs to be ergodic, i.e. every possible state can
be reached in a finite number of steps.

The former is an obvious requirement, since the chain cannot converge to the
target distribution if it changes to some other distribution upon arrival. In Gibbs
sampling, the transition function for a state α, consisting of random variables
α1, α2, ..., αn, is p(αi|α−i). Here α

−i denotes the variables in α except for αi. This
is always an invariant of the joined target distribution p(α) since p(α

−i) is un-
changed and αi is drawn conditioned only on α

−i, such that p(αi|α−i) is also
unchanged. Since these together form the joined distribution of the states, i.e.
p(α) = p(αi|α−i)p(α

−i), it is also invariant.
For ergodicity it is sufficient that the transition probabilities are larger than

zero for every state change possible.
An important fact to keep in mind is the dependency of the samples on their

predecessor. Therefore, to get independent samples, a sufficiently large number
of sampling steps should be performed (and their results discarded) between
two samples, to consider them independent.

3.3 Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is a fully generative probabilistic model to se-
mantic clustering of discrete data. It was introduced by Blei et al. [2003] and has
been applied to finding topics in the text domain, e.g. [Griffiths and Steyvers,
2004], as well as for image data [Wang and Grimson, 2007], [Fritz and Schiele,
2008], [Philbin et al., 2008]. In the following description of LDA, we will adopt
the terminology of the text domain, even though the algorithm is in no way
restricted to text data and will be used to cluster features extracted from 3D
range scans. For easier readability, the mathematical notation used will not be
explained in detail until after a rough description of the model.
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In LDA, the input data is assumed to be organized in a number of sets of dis-
crete data. The individual sets are referred to as “document”. All sets together
form the “corpus”. The data items in the documents are “words”. LDA assumes
the documents to be “bags of words”, i.e. the order will be disregarded. Instead
of relying on a distance measure for generating clusters, semantic clustering
relies on the co-occurrence of the words in documents to assign them to certain
“topics” (i.e. clusters).

The original LDA model of document generation, as proposed in [Blei et al.,
2003], is shown in Figure 3.3a. See [Wikipedia, 2008] for a concise explanation
of the plate notation used.

(a) LDA model as described in [Blei et al.,

2003]
(b) LDA model as described in [Griffiths and

Steyvers, 2004]

Figure 3.3: Graphical representation of the LDA document generation process in plate
notation. The outer plate represents the M documents of the corpus, the
inner plate represents the N words in each document. α denotes a Dirichlet
distribution, θ is the multinomial distribution over the topics that is drawn for
each of the N documents. z is the topic drawn from θ for every word. φ
contains the probabilities P (w|z) for every word and topic. β is the Dirichlet
prior to this distribution.

Being a generative probabilistic model, the basic assumption made in LDA is
that documents are generated by random processes. Each of these represents
a different topic j. A random process generates the words in the document by
sampling them from its own specific discrete probability distribution over the
words φ(j). A document can be created by one or more topics, each having
associated a distinct probability distribution over the words.

To represent the mixture of topics in a document, a multinomial distribution
θ is used. For each word in the document, the generating topic is selected by
sampling from θ. The topic mixture θ itself is drawn from a Dirichlet distribu-
tion, once for every document in the corpus. The Dirichlet represents the prior
belief about the topic mixtures that occur in the corpus, i.e. whether the doc-
uments are generated by single topics or from a mixture of many topics and
which topics prevail.

28
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The model from Blei et al. [2003] is modified by Griffiths and Steyvers [2004],
by specifying a Dirichlet prior β on the conditional distribution φ. The effect of
this prior could be a preference for certain words; but we also restrict the prior,
such that it only affects whether only few words are included in a topic or as
much as possible. Figure 3.3b shows this addition in the graphical representa-
tion.

The following detailed description of how we compute the assignment of topics
to the input data makes use of a rather complex notation. We summarize the
notation in Table 3.1.

d The document index, d = [1,D], D is the number of docu-
ments

wi One of N occurrences of the W unique words, i = [1,N ]. Be-
longs to a document d

w A unique word from the vocabulary. w = [1,W ]
j The topic index, j = [1, T ], zi = j
zi The topic that generates wi. One of T topics.
w The corpus. w = {w1, w2, ...wN}
z The topic assignment vector. Contains the generating topic

for each word occurrence. z = {z1, z2, ...zN}

n
(w)
j The number of occurrences of word w that have been as-

signed to topic j by z.
α A T -dimensional vector used as parameter for the Dirichlet

prior of the topic distributions. For our purpose restricted to
αi = αj for all i, j

θ(d) A multinomial distribution over the topics. Drawn indepen-
dently for each document d from Dirichlet(α)

θ The set of all θd, θ = {θ1, ..., θD}
β A W -dimensional vector used as parameter for the Dirichlet

prior of the word distributions. For our purpose restricted to
βi = βj for all i, j

φ(j) A multinomial distribution over the words. Drawn indepen-
dently for each topic j from Dirichlet(β)

φ
(j)
w The probability of topic j to generate an occurrence of w:

P (w|z = j)
φ The set of all φd, φ = {φ1, ..., φT }

Table 3.1: Notation

To put LDA to use, we want to find the assignments of topics to words that are
probable (ideally the most probable) under this model of document generation.
Given a corpus w = {w1, w2, ...wn}, where each word occurrence wi belongs to
some document d, we are looking for the most probable topic assignment vector
z for our data w. Hence, we need to know P (z|w). From this distribution we
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would like to get a topic assignment, which reflects the underlying objects in the
digitized scenes and therefore lets us distinguish the points in the point cloud
by means of the object class they belong to. Using Bayes’ rule we know

P (z|w) =
P(w|z)P(z)

P(w)
. (3.2)

Unfortunately the partition function P (w) is not known and cannot be computed
directly because it involves TN terms, where T is the number of topics and
N is the number of word instances in the corpus. A common approach to
approximation of a probability distribution, of which the partition function is
unknown, is the use of Markov chain Monte Carlo sampling methods. For LDA,
this approach is introduced in [Griffiths, 2004] as described in the following.
For the reasons stated in Section 3.2, in our setting it is advantageous to use
Gibbs sampling to transition between the states. We therefore sample from
the distribution in the numerator on the right hand side of Equation 3.2, by
successively sampling the topic assignment for each word occurrence in the
corpus, with the distribution conditioned on the topics of all other words. The
distribution over the topics when sampling the topic zi for word occurrence wi

is given by

P (zi = j|z
−i,w) =

likelihood of wi
︷ ︸︸ ︷

P (wi|zi = j, z
−i,w−i)

prior of zi
︷ ︸︸ ︷

P (zi = j|z
−i)

∑T
j+1 P (wi|zi = j, z

−i,w−i)P (zi|z−i)
. (3.3)

We can express these conditional distributions without knowledge of the hidden
variables φ and θ by integrating over them. The likelihood term on the left side
of the numerator depends on the probability of the word distribution of topic j,
so we need to integrate over all these distributions φ(j), i.e.

P (wi|zi = j, z
−i,w−i) =

∫

P (wi|zi = j, φ(j))
︸ ︷︷ ︸

φ
(j)
wi

P (φ(j)|z
−i,w−i)

︸ ︷︷ ︸

posterior of φ(j)

dφ(j) .

We have chosen a Dirichlet prior, that is conjugate to the family of multinomi-
als, which is the family φ(j) belongs to. Therefore the posterior distribution of
φ(j) can be easily computed from the prior and the observations by adding the
observations to the respective elements of the parameter vector β of the prior
Dirichlet distribution. See Section 3.1 for a detailed description. We therefore
have a Dirichlet posterior with parameter vector β + nw

−i,j where the elements of
nw
−i,j are the number of occurrences of each word w, assigned to topic j by the

assignment vector z
−i. Again the subscript −i denotes that the word occurrence

wi, of which the topic is sampled in the current step, is not counted. Since
the terms we integrate over are just one part of the multinomial, weighted by
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the posterior of the multinomial, this boils down to a calculation of the expec-

tation of φ
(j)
wi . From the properties of Dirichlet distributions we know that the

expectation of the ith element of the multinomial variable Xi is

E(Xi) =
αi

∑

i αi

.

Thus having an occurrence wi of word w, the integral can be computed by

P (wi|zi = j, z
−i,w−i) = E(φ(j)

wi
) =

n
(w)
−i,j + βw

n
(·)
−i,j + Wβw

. (3.4)

Where n
(·)
−i,j denotes how many words have been assigned to topic j in total. As

mentioned earlier, we assume all elements of β to be equal, thus the normaliza-

tion in the denominator can be written
∑

w n
(w)
−i,j + βw = n

(·)
−i,j + Wβw .

In the same way we integrate over the multinomial distributions over topics θ,
to find the prior of zi from Equation 3.3. Sampling the topic for word occurrence
wi belonging to document di, we can write

P (zi = j, z
−i) =

∫

P (zi = j|θ(di))
︸ ︷︷ ︸

θ
(di)
j

P (θ(di)|z
−i

︸ ︷︷ ︸

posterior of θ(di)

)dθ(di) .

Again this is the expected value of θ
(di)
j that—due to the choice of the conjugate

Dirichlet distribution as prior—can be calculated by adding the observation

vector n
(di)
−i to the parameter vector of the prior α and dividing the element from

the resulting vector of interest by the sum of all of its elements,

P (zi = j|z
−i) =

n
(di)
−i,j + αj

n
(di)
−i,· + Tαj

. (3.5)

Here n
(di)
−i,j is the number of words in document di, that are assigned to topic j.

n
(di)
−i,· is the number of words in the document excluding wi. Putting the results

from equations 3.4 and 3.5 into Equation 3.3, we find the proposal distribution
for the sampling of zi in the form of

P (zi = j|z
−i,w) ∝

n
(w)
−i,j + βw

n
(·)
−i,j + Wβw

n
(di)
−i,j + αj

n
(di)
−i,· + Tαj

.

After a random initialization of the Markov chain, a new state is generated by
drawing the topic for each word successively from the proposal distribution.
As mentioned in Section 3.2 the chain states are not independent from their
predecessor, so when recording samples to estimate the posterior distribution
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we use a subset of the states with sufficient intermediate steps to consider them
independent. From these samples the values of θ and φ can be estimated using
the sampled topic assignments in z by

φ
(w)
j ∼

n
(w)
j + β

n
(·)
j + Wβ

,

θ
(d)
j ∼

n
(d)
j + β

n
(d)
·

+ Tβ
.

These values can be used to predict the topic assignments for unseen data.

3.4 Clustering

Another way to subdivide a data set into groups is clustering on a distance
measurement. Which can also be an approach to semantic clustering, if the
distance measurement encodes semantic relationship. However, in this thesis
we will primarily use spatial clustering on the euclidean distance of the scan
points. Thus there is no way to tell whether two clusters apart are similar or
not. There are several different clustering methods, of which k-means clustering
and hierarchical clustering are very popular. In k-means and variations like k-
medians, k cluster ids are assigned to the data (3D scan points in our case).
This is done randomly for initialization. Then an iterative algorithm such as
expectation maximization (EM) algorithm is used to find a better partitioning in
each iteration. For EM, one iteration consists of the following steps:

1. Calculate the center (mean, median, ...) of each cluster.

2. For each point calculate the closest cluster center.

3. Reassign each point to the closest cluster center.

This is repeated until no reassignments occur anymore. So in a setting with
two scanned objects, the scan points of each are randomly assigned one of
two cluster ids in the initial assignment. In the following iterations the cluster
centers will be shifted towards the object that had more assignments of the
respective cluster id. However if one object is considerably larger, e.g. a man
and a dog, the feet of the man might be nearer to the center of the dog, than
to the center of the man. Thus, the feet would be assigned the same cluster id
as the dog, shifting the center of the man’s cluster further up. Another problem
arises in a setting with a three objects if one is further apart than the others.
In this case if the initial assignment is such that the distant object is the center
of two cluster centers, both remain in that object, as the points in the other
objects are all assigned to the third cluster.
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Figure 3.4: Hierarchical clustering on euclidean distance between laser measurements
after 3 iterations (left) and 13 iterations (right)

Hierarchical clustering on the other hand does not rely on a randomized initial
assignment. Instead the following deterministic iterative procedure is applied:

1. Calculate a distance matrix, containing the distance between each data
pair.

2. Group the two data items with the least distance.

3. Consider this group as one item for the next iteration.

Due to the last step the distance matrix changes with respect to the distances to
the newly grouped data items. There are several variations in the way distances
are calculated for groups. Having two groups, their distance can be defined by

• The distance of their centers (mean, median, ...).

• Their minimum or maximum distance.

• The average (mean, median, ...) of all pairwise distances.

Under the assumption that objects are apart from each other and do not con-
tain gaps, usage of the minimum distance between groups is a good choice for
objectwise grouping. In such a setting, the longest distances remaining will be
those between the objects.

3.5 Principal Components Analysis

The principal component analysis (PCA) is a vector space transform. For a given
data set, a transformation to a new orthogonal coordinate system is computed.
The special properties of this coordinate system are, that the origin is located at
the center of mass and the axes are ordered by the variance of the data set. I.e.
the direction of the first axis is the direction of the highest variance within the
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Figure 3.5: Principal component analysis on a two dimensional dataset. The eigenvec-
tors ê

1 and ê
2 form a new basis aligned with the variance of the data set.

data set, the direction of the second axis is the direction of the highest variance
orthogonal to the first axis. This is accomplished by first translating the mean
of the data set to the origin by subtracting the mean vector from all data points.
Assuming each point to be on of N column vectors xi the mean vector x̄ can be
computed by

x̄ =
1

N

N∑

i=1

xi .

with translated vectors x̂i = xi − x̄i. With vectors in R
n, where n is the dimen-

sionality of xi, we determine the n × n covariance matrix C of the data set:

C = E
[
x̂ix̂

T
i

]
=

1

N

N∑

i=1

x̂ix̂
T
i .

Since each x̂ix̂
T
i is symmetric, C is also symmetric. Therefore we can com-

pute the eigenvalues and corresponding eigenvectors of the covariance matrix
by finding V that diagonalizes C

D = V
−1

CV ,

where D is a matrix with non-zero entries only on the main diagonal and V is
an orthogonal matrix. The element djj on the diagonal of D is the eigenvalue
to the eigenvector in the jth column of C. When used as basis vectors for a
coordinate system as described above, the eigenvectors have to be normalized
and ordered by the magnitude of their eigenvalues. For two dimensional data
the result is shown in Figure 3.5.

3.6 Spin Images

In recent years, sensor systems to capture 3D range data have become more
and more common in research as well as in the industry. Along comes the
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need to describe and distinguish free-form 3D shapes for tasks such as sur-
face registration, object alignment and of course recognition and classification.
Some feature proposals are briefly described in Section 2.1. A good overview of
proposals can be obtained from [Campbell and Flynn, 2001].

Spin images are a data level representation of surface patches described in
[Johnson, 1997] that have been used successfully for object recognition by
surface matching ([Johnson and Hebert, 1996], [Johnson and Hebert, 1998],
[Johnson and Hebert, 1999]). The generation of a spin image for a given point
on a 3D surface can be thought of as aligning the side of a raster image to
the surface normal of that point, with the “up” direction of the raster image
being equal to the orientation of the normal. Then the raster image is rotated
around the surface normal, “collecting” every point of the surface in the raster
element that intersects with during this rotation. This process is shown in
Figure 3.6. Spin images give a usable representation of the surface property.
Due to the alignment with the surface normal, spin images are translation- and
orientation-invariant. Full rotational invariance comes through the “spinning”
around the normal which can be seen as an integration over the remaining
degree of freedom.

To accommodate for differences in the density of the data we get a canonical
representation of the spin image by dividing the value of every raster element
by the maximum value in the raster. This value is then discretized.

Spin images are adaptable in precision by choosing the raster resolution (how
many raster elements) and a suitable discretization of the stored values. By the
choice of the support distance parallel and orthogonal to the surface normal, the
size of the spin images can be controlled, to explicitly represent local or global
properties of the objects.

A drawback is that the uniqueness of representation depends on the accuracy
of the surface normal. Unfortunately measurement noise greatly affects the
direct calculation of surface normals from the nearest neighbors only, such
that smoothing techniques become necessary.

Figure 3.6: Eight steps in the generation of a spin image on the model of a rubber duck.
Image taken from [Johnson, 1997]
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This chapter describes our approach to clustering and classification of objects
from 3D data using the techniques described in the previous chapter. In the
following we introduce definitions of the problem we face, the task we want to
accomplish and the approach we propose. After these definitions, we describe
our data preprocessing steps, followed by our approach to feature extraction
and clustering.

4.1 Definitions

In this work, we assume the following problem description:

• We are given a set of captured scenes—the corpus. Each scene is in form
of a point cloud and contains a set of objects plus irrelevant background
structure.

• Each object is an instance of exactly one object class.

• We consider the number of object classes contained in the corpus to be
known.

• For each scene, we assume the minimal distance between point measure-
ments within one object to be smaller than the minimal distance between
points of different objects.

Given a corpus where these assumptions hold true, we want to achieve the
following task:

• Learning a model for object classes in an unsupervised way.

• Consistent classification of the objects in the corpus.

• Correct classification of unseen objects belonging to one of the known ob-
ject classes.

Note that “unsupervised” in this context does not mean, that our approach does
not require human interaction. In particular, insights about the parameters for
feature generation will be found through the experiments in Chapter 5. How-
ever, the parameters determined in this way will be applicable to a wide range
of object classes and are not limited to the exact set of objects, we use. Im-
portantly, the model for each object class will be learned without supplying the
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learning algorithm with information about the classes, e.g. in form of training
examples. Our approach is structured as follows:

• Spatial Segmentation of the scenes into segments.

• Usage of discretized feature that describe the data based on shape.

• Use of LDA for learning the class models based on feature histograms.

• Use of LDA for classification of seen and unseen data.

4.2 Data Preprocessing

When recording 3D data with a range scanner, the output is a stream of distance
measurements associated the 3D rotation angles — pitch, roll and yaw — and
the coordinates of the origin of the laser beam. This data we use to compute a
point cloud of 3D coordinates of the endpoints of the beams. The recorded data
encompasses the distances of everything within the field of view of the scanner.
A sample scene and the resulting point cloud is shown in Figure 4.1

(a) Picture of the Scene (b) Point Cloud

Figure 4.1: Example Scene with three boxes and two balloons.

To be able to concentrate on the objects we extract the floor, walls and other
objects in the background of the scan.

In preliminary classification experiments, we tried to learn the similarity clus-
ters on the remaining foreground objects. However, the results did not meet our
expectations, which we attribute to problems of LDA to learn from documents
with mixed topics. A similar problem has been faced in [Wang and Grimson,
2007] for visual images containing different objects and has been solved by
segmenting images in various ways. In 3D range data the distinct advantage
is, that segmenting can be done on a full Euclidean distance measure, as all
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Figure 4.2: Artifacts (highlighted by yellow background) often occur at the edges of an
object, where the laser beam hits the object only partially

spatial dimensions of the measured points are known. Therefore another pre-
processing step is introduced: clustering the scan with a minimal gap between
scanpoints as separation criterion. Note that oversegmentation is of no concern
here, since splitting of one object into more than one document in general will
not affect the performance of the algorithm, as it should be able to find the
similarities in the object parts to other documents with different segmentation.
Also for hierarchical clustering, which we will use for comparison, segmentation
is required, as this method yields no point-wise labeling.

No efforts have been undertaken to remove artifacts from the scanning pro-
cess. These generally occur at the edge of objects when only part of the laser
beam hits the object while the rest is reflected by something behind the object.
If the two measurements are nearby, the scanner interpolates between the two
times-of-flight; this results in frayed out edges, as visible in Figure 4.2.

4.3 Feature Extraction

As described in chapter 3.3 we need to extract discrete features from the in-
put data, that reflect the characteristics of the objects classes. In the case of
3D range data the main property to be extracted is a description of the sur-
face shape. Therefore we investigated shape descriptors for applicability to our
setting. The requirements were:

• Translational invariance

• Invariant under rotation (at least about the Z Axis axis)

• Unique in representation

• Representation of free-form objects
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4 Methodology

Figure 4.3: Illustration of our proposal for an advanced surface signature: Instead of
counting scan points (red) on a surface, the angles (green) of their surface
normals (small arrows) relative to the normal of the query point (big point and
arrow) are stored.

• Usable with parts of objects

• Discretization is possible

Invariance under rotation about X and Y axes yields the advantage of having
the same class for, e.g. standing and lying people, yet makes it impossible to
distinguish a wall from floor and ceiling. A unique representation will always be
the same for the same underlying non-invariant properties. Features which do
not have a unique representation, for instance the 3D shape context in [Frome
et al., 2004], require that one representation from the input data is compared
against all representations of the feature in the model. Since there is no pre-
defined model in unsupervised learning all representations would be necessary
for every feature, thus greatly increasing the size of the feature dictionary.

A feature that fulfills all the above requirements is the spin image described
and discussed in Section 3.6.

To further improve the expressiveness of the spin images with respect to the
local shape of a point, we introduced changes to the generation process. In-
stead of counting the points intersecting with the “spinning image” and possibly
normalizing the image later, we compute the angle between the normal of the
query point and the normals at the collected points. Finally all angles in one
bin are averaged over. The process is illustrated in Figure 4.3 for a simplified
2D example.

This proposal follows the lines of [Stein and Medioni, 1992] in that it explicitly
uses the orientation of the surface in the neighborhood of a point. In exper-
iments this kind of spin image led to considerably better consistence for the
feature histograms from different object classes (see Section 5.2). Experiments
with a similar surface signature, based on the up vector instead of the surface
normal of the query point, did not meet our expectations.

As mentioned in Section 3.6 the calculation of the surface normal is prone
to measurement noise and slight imprecisions in the scanner pose. Computing
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the surface normal of a point using its nearest neighbors only, therefore proved
prohibitive. There are many different ways to approach this problem. The most
common approach is to apply the principal component analysis as described
in Section 3.5, by using the eigenvector in direction of the lowest variance.
Since we cannot measure surfaces with a normal oriented away from the sen-
sor, we always know the correct orientation. We therefore applied the principal
component analysis on a patch of 15 cm radius for normal calculation, which
yielded quite stable results, yet introduces undesired smoothing of edges and
corners. Experiments with a smaller radius and with a mesh based calculation
showed worse results because of the inaccuracies in the sensor data, especially
for sparse data, distant from the sensor.

4.4 Clustering

After transforming the raw input data to a discrete feature space, we want to
cluster the scan segments created in the preprocessing step on basis of their
feature histograms. Inspired by previous work we want to use Latent Dirichlet
allocation, as described in Section 3.3 for the unsupervised discovery of object
classes. Latent Dirichlet Allocation is a probabilistic framework. It has been
successfully used for the semantic clustering of distributions of discrete data
in the text domain and for appearance based clustering in visual data. We
will apply it to cluster the distributions of surface features. As mentioned in
Section 3.3, we need to supply the values for the hyperparameters α and β.
The hyperparameters define the prior distributions for the mixture of object
classes in a data set, and the mixture of features in an object class respectively.
In the next chapter we experimentally determine the optimal range for both
hyperparameters.

For comparison of our classification results, we also implement a clustering
method based on hierarchical clustering. Hierarchical clustering is a spatial
segmentation approach, thus we need to compute a distance measure between
the feature distributions. To compare two documents d1 and d2 we normalize
their histograms of feature occurrences fd = {f1, f2, ..., fV} such that each sums
up to one. We then compute the histogram intersection, as described in [Hetzel
et al., 2001], by summing for each feature the smaller occurrence count. Hence,
if two feature distributions do not have any features in common, the smaller
value of two corresponding histogram bins is always zero, and thus the sum is
zero. In contrast, for similar distributions the minimum of corresponding bins
will be high for shared features, resulting in a intersection close to one. The
calculation is illustrated in Figure 4.4.

We also considered the χ2 and Kullback Leibler divergences as distance mea-
sures. Both would need smoothing for features occurring only in one of the
segments, as probabilities of zero cannot be handled. Furthermore, both are
heavily influenced by features with few occurrences of which there are many in
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Figure 4.4: The intersection of two histograms is defined as the sum of the smaller ele-
ments

our data. This led to considerably worse results with respect to the distances
between distributions that represent the same object class. As mentioned be-
fore, there are several methods to determine the distance of two clusters, which
we address in Chapter 5.

LDA does not need an explicit distance measure, as the feature occurrences
are treated as observations of random variables. LDA is not affected by features
with few occurrences and will most likely assign the predominant label in the
document they belong to.
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In this chapter we describe our experiments of object classification, using the
features described in Section 3.6 and Section 4.3. For semantic clustering,
we use latent Dirichlet allocation and hierarchical clustering as described in
Chapters 3 and 4. The goals of our experiments are

• to find a range of parameter settings, that achieve optimal classification
results and

• to demonstrate the capabilities of our approach.

In the following section we describe the data we use for our experiments,
including the capturing process and the objects we want to classify. With these
objects, several scenes are set up and scanned. The resulting point clouds
are then preprocessed and the features are extracted. For feature extraction we
need to determine a reasonable subset of the parameter space. This is described
in detail in Section 5.2. Section 5.3 describes the classification experiments with
both clustering methods. The focus will be on the exploration of the determined
parameter range. The results will be discussed and compared in Section 5.4.

5.1 Input Data

We use two sets of 3D laser range scans that were recorded with the robot
shown in Figure 5.1. The laser range scanner unit is a SICK LMS 291-S05 with
an angular resolution of 0.25 degrees and a standard deviation of 10 mm.

Figure 5.1: The robot used to capture the range data
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Figure 5.2: Objects of corpus one: Balloon and box

The unit is mounted onto a Amtec PowerCube hinge on a Pioneer 2-AT robot
base. To capture a 3D scene the hinge changes the pitch of the scanner unit,
such that subsequent range scans cover the whole scene. The angular resolu-
tion for the pitch is about 0.33 degrees. A sample scene and the resulting point
cloud is shown in Figure 4.1

All scans have been preprocessed as described in 4.2, such that the later
feature extraction step takes place on segments of the scans, containing only
individual objects.

5.1.1 Corpus One - Simple Object Classes

For the first set of scenes two object classes were scanned: cardboard boxes of
size 30 cm x 60 cm x 60 cm and balloons with a diameter of about 30 cm. Fig-
ure 5.2 shows an example of each class. These two primitive object classes were
the basis for a first evaluation of our approach. The resulting features for the
objects were rather homogeneous. The surface patches on the approximately
spherical balloons are almost uniformly shaped, with respect to the position
and orientation of the surface normal. The feature distribution is therefore
dominated by only few features. The same holds true for the sides of the boxes
which dominate the features generated by the box, though the edges and cor-
ners give rise to diverse features.

This set of scans consists of twelve scenes containing 31 individual objects.
Figures 5.5a and 5.5b exemplify the resulting point clouds. Figure 5.4a shows
the number of measurements for each of the individual objects. The huge dif-
ference is mainly due to different distances between object and sensor. Differing
object size and occlusions also affect the number of scan points.

5.1.2 Corpus Two - Complex Object Classes

For the second set, we chose to include more complex object types than in the
previous set and also have more similar classes. So besides ballons and boxes
the scenes contain humans and two types of chairs. Example objects are de-
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5.1 Input Data

(a) Human, balloon and box (b) Chair (c) Swivel chair

Figure 5.3: Pictures of the test objects in corpus two
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Figure 5.4: Number of point measurements in the documents after segmentation

picted in Figure 5.3 and some resulting point clouds in Figure 5.5. Visualization
of more scan segments can be found in Appendix A; there, the difficulty of the
data set is apparent, e.g. in artefacts from noisy measurements. In particular,
the legs of the chairs are extremely noisy, due to reflection of the laser beam.
Also particular difficulties arise from the self-occlusions, inherent to the viewing
perspective. In the two chair classes, the seating area is often occluded. Boxes
reduce to a single plane, dependent on the point of view. The features extracted
from the scans of humans are very diverse compared to the simple objects. Fur-
thermore the scans differ because they include four different persons in slightly
varied stances. The two kinds of chairs and the boxes will provide information
on how well we will be able to distinguish and generalize similar classes.

This second set consists of 39 scenes segmented into 82 documents. Figure
5.4b shows the measurement counts of the documents.

This corpus serves to find limitations of clustering based on latent Dirichlet
allocation. While we still use relatively simple scenes to allow for the spatial
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(a) Box (b) Balloon (c) Human (d) Swivel Chair (e) Chair

Figure 5.5: Example point clouds for objects after spatial segmentation

clustering to find a good clustering, the scenes contain very difficult challenges,
as mentioned above.

5.2 Feature Distributions

As described in Sections 3.6 and 4.3 we need to determine a set of suitable
parameters for the generation of spin images:

• Raster Resolution

• Discretization Resolution

• Support Distance

All these parameters influence how shapes can be distinguished, yet with dif-
ferent ramifications. Raster and discretization resolution mainly affect the pre-
cision of discrimination and are therefore important with regard to error ro-
bustness and the ability to differentiate small variations in shape. The choice
of these parameters depends strongly on the density of the point cloud — and
thus on the angular resolution of the scanner and its distance to the objects.
As stated before we use a maximum angular resolution of 0.33 degree along
the pitch and 0.25 degree along the yaw. The minimum distance (assuming the
surface to be orthogonal to the laser beam) of a point to its nearest neighboring
scan point can be computed by dij = D· tan(αij) as shown in Figure 5.6. For ob-
jects within a range of 5 m this results in a minimal distance of 2.9 cm vertically
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5.2 Feature Distributions

and 2.2 cm horizontally. Therefore a smaller bin size (size of the raster elements)
would be prone to contain bogus empty bins that are between two scan points.
A slightly larger bin size might still be prone to misrepresentations if the laser
beams hit a distant object in a steeper angle. Therefore, the maximum k × k
raster resolution should be chosen to have k < support distance

D·tan(α) .

The problem of choosing a good discretization resolution is different for the
two types of spin images. For the standard spin images, the discretization reso-
lution defines how fine-grained the relative density of surface points is captured.
Here it is important to have a lower resolution than the typical maximum num-
ber of points collected in a bin. Otherwise distant objects will not be repre-
sented correctly as the points are sparse and their numbers not representative
anymore.

For the point descriptor we proposed in Section 4.3, resolution denotes the
how we subdivide the relative angle between the surface normals. So for a
resolution of two discrete values, we would only be able to tell whether it is lower
or higher than 90 degrees. For reasonable differentiation the value should be
higher than that. If chosen too high, the exact position of the measurements
will influence the result. However, this effect is not as problematic as with the
standard spin images and we would like to retain a degree of imprecision, as it
allows for slight variations in shape.

Figure 5.6: Computing the distance between neighboring scanpoints given the distance
to the laser scanner

The support distance, i.e. the size of the spinning image, is important to cap-
ture the context of a shape. If it is chosen too small, the information captured
by the spin image will only include the most nearby changes and most spin im-
ages will look similar, i.e. flat, since the variation of a shape is usually limited.
If chosen too large, local changes in the object will affect the spin images in a
large area which might be problematic, especially if there is occlusion or clutter
in the scene. Also, local features will be more robust when trying to discriminate
the class “human” and all the spin images are affected by the exact position of
the arms.
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Figure 5.7: Document similarities under a hypothetical feature that perfectly separates
the classes

To evaluate the distinctiveness of features generated with a certain parame-
ter set, we first use the histogram intersection to measure the similarity of the
documents. This is of course a good estimation for hierarchical clustering, as
it depends on distances between the scan segments, that allow to separate the
classes. It is also suitable for LDA, since the histogram intersection concen-
trates on the amount of words shared between two documents. Upon these
quantities the learning algorithm decides whether two documents are of dis-
tinct topics or not. Assuming an ideal feature, that can perfectly discriminate
between the desired classes, the intersection would result in high similarity for
objects belonging to the same class and no similarity for objects of different
classes. This ideal discrimination is shown in Figure 5.2. Here, the similarity
value obviously allows for separation of the two object classes. Note, that the
exact value shown is of no importance, as long as the interclass similarity is
always lower than the similarity within the classes.

Figure 5.8 shows two example plots of the similarities between the documents
in corpus one for the standard spin images as described in Section 3.6 and our
surface representation as in Section 4.3. The plot shows generally high simi-
larity between the documents within one class and less between documents of
different classes. However, choosing a higher discretization resolution decreases
the intraclass similarity of documents. Lowering it will increase the interclass
similarities.

To find a good compromise we calculate a ratio of interclass similarity to intr-
aclass similarity. The intraclass similarity is computed by averaging over each
similarity measure in a class. For the interclass similarity we also average over
the similarities between the documents of two classes, then choose the result of
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(b) Spin images type 2: Raster resolution of 5×5

and discretization to six values

Figure 5.8: Example document similarities for a support distance of 10 cm

the most similar pair. This proceeding proved to be an important choice, since
otherwise the distinction between the most similar classes were not emphasized.
However these numbers are of course only a rough guide. They do not reflect
that using a high resolution, some scans do hardly resemble any other scan.
For this kind of information we need the full documentwise plots.

Figure 5.9 shows these cumulated statistics for the objects in the first corpus
at a support distance of 10 cm, raster resolution of 3×3 which are the parame-
ters where the standard spin images performed best. On the left side the results
for the intraclass similarity are shown. The diagram shows that the intraclass
similarity is much higher for the surface descriptor we proposed. Also the in-
terclass similarity is lower than when using the standard spin images. This
relation holds true for all parameter sets we computed.

The second column suggests, that the features generated with the chosen
parameters allow a good distinction between the two classes and thus we expect
the clustering algorithm to be able to classify accurately. Learning results for
the first corpus are presented in Section 5.4. However, a similar quality of
distinction is achieved for a wide variety of parameters for this corpus. Therefore
our attention lies on the second corpus, where the problem of finding a suitable
parameter set is harder.

Hence we did the calculations described above for the second corpus. Sample
similarity plots can be seen in Figure 5.10. Particular problems visible are
the high similarity between chairs and boxes and the low similarity within the
classes “human” and “swivel chair”. If we create the surface signatures with a
high level of detail (in terms of raster and discretization resolution) and limited
locality, we expect the classes “human” and “swivel chair” to be missclassified
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Figure 5.9: Comparison between histogram intersections for standard spin images (top)
and our proposal (bottom). On the left side are the intraclass values (higher
is better), centered are the interclass values (lower is better). The right figure
shows the ratio (lower is better) .

often. With very rough, localized features, we expect the documents of the
classes “chair” and “box” to become a common class.

For this corpus the choice of good parameters for the surface descriptors is
crucial to the success of the learning algorithm. We evaluated a variety of pa-
rameters, with respect to the histogram intersection ratio, as described above.
We parameterize the support distance in the range of 10 cm to 50 cm. The num-
ber of scanpoints for distant objects does not allow a sensible choice of raster
resolution for smaller support distance. A higher support distance contradicts
the advantages of local features mentioned earlier. We evaluate raster resolu-
tions of 3 × 3, 4 × 4, 5 × 5 and 7 × 7.

Figures 5.11, 5.12 and 5.13 show the evaluation of the intra-/interclass sim-
ilarity ratio for this corpus, for different parameter combinations of support
distance, raster resolution and discretization resolution. The figures only depict
the results for the surface signature we proposed, as the results of standard
spin images are consistently worse. From these statistics we can deduce which
parameters sets result are promising. Again, on the left side the average sim-
ilarity of documents of the same class are shown. The plots support our ex-
pectations of reduced similarity with higher detail and larger support distance.
The center column shows the decrease of similarity for documents of different
classes. And as we can see in the right column, the decrease in the intra- and
interclass similarity is not proportional. Note that the plot colors only reflect a
range from zero to one. If the documents of a class have a higher similarity to
those of another class than to other documents of the same class, their ratio is
above one and displayed with magenta regardless of the magnitude. This allows
to concentrate on the relevant range and is of no disadvantage here. A ratio
of one or above, that there can be no distinction between those classes, such
that all scan segments are classified correctly. Values below 0.01 are shown in
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(a) Standard spin images
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(b) Spin images type 2

Figure 5.10: Example document similarities for a support distance of 20 cm, discretization
to 13 values, raster resolution of 3 × 3

black, to emphasize that there is less than one percent correspondence between
the documents. As these results are averaged, this is a sign that there is hardly
any match for many documents anymore.

From the plots we deduce, that for small support distances up to 10 cm it is
extremely difficult to distinguish some objects — in particular chairs and hu-
mans — from object of other classes. For chairs we see that the ratio becomes
better when the discretization resolution is higher. However the class of hu-
mans has a meaningful self-similarity for less precise resolutions. For a larger
support distance we obtain a window of resolutions where the ratio goes down
considerably. For support distance values of 0.5 m and above the intraclass
similarity is very low, such that for many documents a sensible classification is
impossible.

In conclusion, the shown subset of the parameter space seems sufficient for
a thorough analysis of the capabilities, as we cover the sensible spectrum for
locality and precision. As argued above, we deem values outside this spectrum
to be problematic. Hence the clustering experiments in the following section
only consider the parameter ranges established in this section.
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Figure 5.11: Analysis of intra- and interclass similarity for the second corpus. Various pa-
rameter sets are shown in rows. Here “sd” stands for “support distance”, “rr”
stands for “raster resolution”
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Figure 5.12: Analysis of intra- and interclass similarity for the second corpus. Various pa-
rameter sets are shown in rows. Here “sd” stands for “support distance”, “rr”
stands for “raster resolution”. (Continued)
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Figure 5.13: Analysis of intra- and interclass similarity for the second corpus. Various pa-
rameter sets are shown in rows. Here “sd” stands for “support distance”, “rr”
stands for “raster resolution”. (Continued)
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5.3 Clustering

After feature extraction, we classify the feature distributions. First the experi-
ments using hierarchical clustering are presented, followed by the experiments
based on latent Dirichlet allocation. We evaluated the clustering results using
the intuitions for the feature generation parameters as described above. The
goal of these experiments is to find a range of parameter settings with excellent
results, rather than finding a particular setting to generate a perfect clustering
result. Identifying a suitable range instead of one perfect setting is important,
as it demonstrates, that the results generalize to deviations in the setting of the
experiments. This includes, for instance, varying complexity of the objects and
differences in data capturing.

5.3.1 Hierarchical Clustering

There are two important choices to be made, when using hierarchical clustering:
The distance measurement and — based on that — the method to determine the
distance for a cluster. The first choice has been described in Section 4.4. For
the reasons stated there, we will make use of histogram intersection as distance
measurement. For the second choice, however, we will find the best method ex-
perimentally. Also we need to find parameters for feature generation, that yield
a good separability of the classes when using hierarchical clustering. Therefore,
we generated feature distributions for both corpora, using the parameter com-
binations analyzed in the previous section. For each parameter combination
we clustered the scan segments into two categories for the first corpus and five
categories for the second corpus. For evaluation we determine which clusters
represent which object class and calculate the percentage of correctly assigned
segments.

Corpus One

Figure 5.14 shows the results, accumulated over the various experimental set-
tings. The x-axis shows how many scan segments have been correctly classified,
the y-axis shows for how many parameter combinations a result was achieved.
There are two peaks: The peak at 100 % shows that the scan segments have
been perfectly grouped according to whether they contain a balloon or a box.
The peak around 60 % is mainly due to parameter sets, where all but one seg-
ments are assigned to the first cluster and only the last segment is in the second
cluster. Since the first cluster corresponds to the box class, the box segments
are counted as correctly classified.

For a thorough analysis we computed the clustering for the parameter com-
binations and both feature types mentioned in Section 5.2. For hierarchical
clustering we use the following linkage types for cluster distances:
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• Minimum Pairwise Distance (also “single linkage”).

• Average Pairwise Distance.

• Maximum Pairwise Distance (also “complete linkage”).

As stated before, we want to find a parameter range, that yields optimal results.
Here we have many parameter combinations that achieve perfect classifications,
i.e. each cluster contains only objects that belong to the same class. Having so
many perfect results, we disregard the non-perfect parameter combinations for
now and count the remaining results with respect to the parameters. The most
influential parameter seems to be the feature type. As Figure 5.15a shows, more
than twice as many perfect results were achieved using our feature proposal,
than using the standard spin images. In Figure 5.15b the perfect clustering
results are shown with respect to the linkage method, where we see that max-
imum distance linkage is considerably inferior to the other two methods. In
consequence we only investigate further on the perfect classification results
with feature type two and without complete linkage. The dependencies for this
reduced result set are shown in Figure 5.16, where we see that discretization
resolutions of six and nine discrete values perform best. The right graph sug-
gests a tendency towards coarse raster resolutions, while the center plot shows
that a support size of 20 cm most often produces a perfect classifications. Re-
stricting this approach to features of

• feature type two, with

• 0.2 m support distance and

• discretization of the raster elements to between six and 27 distinct values,

we find the results shown in Figure 5.17. Note that raster resolution has not
been restricted, as the results with respect to the given support distance and
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Figure 5.14: Aggregation of the classification results.
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Figure 5.15: Number of perfect results with respect to different parameters
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Figure 5.16: Number of perfect results with respect to different parameters using only fea-
ture type two and exclusive the maximum linkage method
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discretization have shown no preference anymore. Other parameter subsets
could be chosen where raster resolution plays a role. Overall the clustering
performance is very good.
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Figure 5.17: Accuracy of hierarchical clustering for the first corpus, with restricted param-
eter range (see text)

Corpus Two

For the second corpus the grouping is far more difficult as the object classes are
less uniform, have a higher resemblance between classes and there is increased
variation within classes. The clustering results accumulated over all parameter
sets are shown in Figure 5.18. Clearly most parameter combinations result in
unacceptable results. Again we try to find parameter settings that work well in
a variety of parameter combinations. In contrast to the experiments on the first
corpus, there are no perfect classification results; we therefore rather identify
and exclude parameter settings, that lead to inferior results.

Figure 5.19 shows the classification accuracy with respect to the different
methods of measuring the distance between clusters (see Section 3.4). Contrar-
ily to the first corpus, using the maximum pairwise distance between points in
the clusters yields the best results. As depicted in Figure 5.10 some scans seg-
ments of a class usually resemble a segment of another class. Under the mini-
mum pairwise distance method, this serves as a “bridge” between classes. If the
similarity between two segments of different classes is higher than the similar-
ity of another segment to any of the segments, the former will be connected—
possibly joining their classes—while the latter will remain as an individual class.
This effect is very comprehensible in a setting depicted in Figure 3.4. If the per-
son stood directly next to the chair, its foot would be connected to the leg of the
chair, joining the clusters, before the head and shoulder would be included in
the “person” cluster.

58



5.3 Clustering

0 20 40 60 80 100
Percent Correctly Classified

0

20

40

60

80

100

120

140

160

180
Fr

e
q
u
e
n
cy

All Parameter Combinations

Figure 5.18: Accumulated results for the second corpus.
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Figure 5.19: Classification results for hierarchical clustering of the feature distributions,
with respect to the different methods of distance calculation for clusters.
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Figure 5.20: Classification results for hierarchical clustering of the feature distribution with
respect to the feature type.

This effect leads to the considerably bad results in the bottom chart. Per-
centages below 20 % in general signify, that nearly all scans have been assigned
to a single class. In contrast, in maximum pairwise linkage, the most similar
segments of distinct classes do not lead to “bridges” as often, because their dis-
tance to the most distinct segment of the other class is still high. Because of the
high difference in accuracy, we concentrate on the classification results of the
maximum linkage clusters in the following analysis. In the next step we veri-
fied our prediction of the distinctive qualities of the feature types. Figure 5.20
shows a bar chart over the classification accuracy for the used feature types,
with type one corresponding to standard spin images, while type two denotes
our proposal. On the left (worse classification accuracy) we see a prevalence
of the first type, on the right (more correct classifications) we find more results
based on the second feature type. Figure 5.21 depicts several plots, that show
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the average accuracy with respect to the feature generation parameters support
distance, raster resolution and discretization resolution. The charts on the right
side emphasize that there is no benefit in choosing a higher discretization reso-
lution than nine distinct values, which corresponds to a resolution of 20 degree
in the second feature type. The left and lower right chart show that the best
results have been achieved using a support distance of 0.2 m. For the raster
resolution the picture is not as clear.
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Figure 5.21: Analysis of parameters for feature generation
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Figure 5.22: Results for a support distance of 20 cm and discretization of less that 10 values

Therefore we disregard the resolutions above nine and the support distances
other than 0.2 m and plot the remaining results with respect the raster reso-
lution. The results are shown in Figure 5.22. Unfortunately, there is still a
huge variation from 40 % to 96 % in the results, meaning that a very specific
parameter set has to be selected to get good results. This is in contrast to the
goal stated before, that the results should be robust over a variety of parameter
settings.

5.3.2 Latent Dirichlet Allocation

For semantic clustering under the latent Dirichlet allocation model, we use the
implementation developed by Phan [2007] to calculate the topic assignments z

and the topic distribution θ. The learning algorithm requires three hyperparam-
eters: The number of topics and the parameter vectors for the prior Dirichlet
distributions over the words and the topics respectively. As mentioned in Sec-
tion 3.3, larger values for α favor the occurrence of many topics in each docu-
ment, while low priors result in less topics per document. Similarly, the lower
the hyperparameter β for the Dirichlet distribution over the words, the stronger
the preference for fewer words per topic and unambiguous words. Due to the
segmentation in the preprocessing we strongly assume that there are few topics
per document. However, a value chosen too low endorses the assignment of the
prevailing topic to all features in a document, giving rise to missclassifications.
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Also for β, a tradeoff is needed. One the one hand different objects can yield
the same discrete features (yet in distinct distribution). On the other hand we
need the words to be strongly related to specific topics. From the intuitions for
the Dirichlet parameters, as described in Section 3.1, we expect better perfor-
mance if both parameters, α and β, are between zero and one. We verified this
assumption empirically.

Choosing the value for α near one, the topic count per document slowly tends
towards a uniform distribution, introducing topics into the document, which are
not related to the underlying object. However, choosing α too low will cut out
topics from documents rigorously. In the worst case this leads to the elimination
of less dominant topics, if they only occur in combination with other topics.
Their characteristic words will be assigned to the co-occurring topics.

In the same manner, higher values of β result in bad differentiation, since
the probability, for occurrences of a particular word to be assigned to different
topics in different documents, is rising. Using a low penalty for word ambiguity,
the words of topics with less co-occurrences are assigned to the more dominant
topics. Too low values of β enforce a single topic for all occurrences of a word,
disregarding the possibility of a word to represent more than one object. Thus,
introducing the topic with the higher probability for the word, even though not
appropriate. Following these arguments, we experiment with hyperparameters
combinations of 0.8 ≥ α ≥ 0.012 and 0.8 ≥ β ≥ 0.012. To compare LDA to the
results from hierarchical clustering, we use a maximum likelihood classification
in the following experimental evaluation, i.e. we only consider the prevailing
topic for each scan. More sophisticated approaches (e.g. k-nearest neighbor,
as in Bosch et al. [2006]) are thinkable, yet this proceeding will suffice for our
purpose.

Corpus One

As for hierarchical clustering we begin our experimental evaluation with the
classification of the feature distributions of the first corpus. The results are
shown in Figure 5.23. Compared with the corresponding statistics of hierarchi-
cal clustering (see Figure 5.14) we notice the missing peak around 40 %, that
was due to the assignment of almost all segments to a single class. Although
the results are already very good, we still want to exclude parameters leading to
bad results. An analysis, analog to our proceeding for hierarchical clustering,
confirms again the choice of the second feature type. Also the features with
support distances up to 30 cm perform better than less local features. For the
remaining feature parameters a compromise between precision and generality
should be found, e.g. very coarse discretization resolutions work better with
higher raster resolutions and vice versa. The same holds true with respect to
support distance. Thus, by concentrating on the parameter combinations in the
table below, we have a perfect clustering in 97.5 % of the calculations, with few
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Figure 5.23: Accumulated results for clustering the feature distributions of the first corpus
using LDA.

missclassifications for the remaining 2.5 %.

Support Distance Raster Resolution Discretization v

3 × 3 6 ≤ v ≤ 94
0.1 m 5 × 5 3 ≤ v ≤ 94

7 × 7 3 ≤ v ≤ 63

3 × 3 3 ≤ v ≤ 94
0.2 m 5 × 5 2 ≤ v ≤ 94

7 × 7 2 ≤ v ≤ 63

3 × 3 2 ≤ v ≤ 94
0.3 m 5 × 5 2 ≤ v ≤ 42

7 × 7 2 ≤ v ≤ 27

These limitations are not particular stringent, as only a minority of the pa-
rameter combinations used in the experiments are excluded and the remaining
parameter space is quite flexible.

The results with respect to the hyperparameters of LDA, α and β, are shown
in Figure 5.3.2. The left hand plot shows the correctness of clustering, aver-
aged over all settings. The right hand side is averaged only over the subset of
parameter space defined above. Unfortunately, no particular region seems to be
consistently favorable, yet the variation is rather small, such that the particular
choice of hyperparameters within the given bounds seems to be neglectable.

To illustrate the clustering results, Figure 5.3.2 shows a point-wise color la-
beling of two example input scenes. The labels assigned to the points are taken
from a sample of the posterior distribution P (z|w), as generated when learn-
ing the clustering. The results for this corpus are perfect for the maximum
likelihood classifier, but also nearly perfect for the pointwise classification. Mis-
classified points, if any, are very sparse and could easily be filtered, e.g. using
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Figure 5.24: Average accuracy

a Markov random field.

Corpus Two

Feature Parameters

As for hierarchical clustering we evaluate the parameter combinations by calcu-
lating the percentage of correctly classified documents for each corpus and each
combination of learning parameters. This gave us 21560 percentages, 10780 for
each feature type. The distribution of these percentages for the feature types are
shown in Figure 5.26. The higher red bars on the left side show that classifica-
tion on standard spin images (“Type 1”) yields bad results more often, while our
feature proposal (“Type 2”) often allows for correct classification of 80 percent
or more of the documents (high blue bars at the right side). This again validates
our conclusion to concentrate on the second type in further comparisons.

In the next step we measure classification accuracy, with respect to support
distance and raster resolution. The charts on the left of Figure 5.27 again show,
for each percentage of correctly classified documents (along the x-axis), how
often it was achieved with the mentioned parameters. It is clearly visible that the
features with support distance of 0.5 m and 0.4 m are inferior because often less
than 50 % of the documents are correctly classified. In contrast with a support
distance of 0.1 m, very few parameter combinations result in bad classification
rates. Most corpora are classified correctly to 80 % and more. Similarly for
higher raster resolutions the results are worse than for coarse rasters. The
matrix on the right shows the interdependencies of the combinations of the
parameters, endorsing what can be seen in the individual graphs. In conclusion
the following step only includes the parameter combinations with an average
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Figure 5.25: Illustrations of the point-wise labeling of the range data with samples of the
LDA topic assignment vector z
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Figure 5.26: Classification upon standard spin image features (“Type 1” shown in red)
generally labels less documents correctly than classification upon the fea-
tures we proposed (“Type 2”, blue).

of 70 % and above. Figure 5.28 depicts the performance with respect to the
remaining parameter sets and discretization resolutions. We see that for smaller
support distance, higher discretization resolutions work well and vice versa.
This is due to the need for generalization, as feature distributions with a large
support and a very accurate discretization have too precise features, that do not
matched to the distributions of other segments. Here the size of the data set
plays a role, as for a sufficiently large data set, every feature, however precise,
occurs often enough, such that it can be matched with features from other
distributions.

The best results in our setting are obtained for strongly localized features,
with a discretization resolution between five and 27. In conclusion we see, that
choosing such parameters for the feature generation, we can achieve over 85 %
correct classifications, averaged over the learning parameters. This is quite
impressive given the difficulty of the data set.

LDA Hyperparameters

Having identified suitable parameters for feature generation, we still need to find
a good compromise for the hyperparameters of LDA. As mentioned earlier we
assume symmetric Dirichlet priors, because we neither anticipate certain topics,
nor particular features. Also the priors should be below one, since we assume
few objects to fall into one scan segment and expect the features to be typical for
few object classes. Therefore, for both α and β, we evaluated all combinations of
values ranging from 0.012 to 0.8. Figure 5.29 shows the classification results
with respect to α and β. The right plot shows the accumulation over all feature
generation parameter combinations. On the left, results are accumulated over
the feature sets chosen in the previous section. Note the difference in scale.
In both plots the value of β seems to be of minor importance. For α, the left

66



5.3 Clustering

0 20 40 60 80 100
% Correctly Classified Documents

0
20
40
60
80

100
120
140
160

Fr
e
q
u
e
n
cy

Support Distance

0.10
0.20
0.30
0.40
0.50

0 20 40 60 80 100
% Correctly Classified Documents

0

20

40

60

80

100

120

Fr
e
q
u
e
n
cy

Raster Resolution
3x3
4x4
5x5
7x7

3 4 5 7
Raster Resolution

0.10

0.20

0.30

0.40

0.50S
u
p
p
o
rt

 D
is

ta
n
ce

Average Correct Classifications

45
50
55
60
65
70
75
80

%

Figure 5.27: Frequency of classification results per support distance (upper left) and raster
resolution (lower left). Smaller (0.10 cm) and less detailed (3×3) features result
in better classification rates. The plot at the right confirms this relation for
various combinations of parameters

side suggests values between 0.025 and 0.05. On the left we see, that this
restriction becomes less important when selecting appropriate parameters for
feature generation, such that only large values of α lead to drastically worse
clustering results.

To illustrate the clustering results for the second corpus, Figure 5.3.2 shows
a point-wise color labeling of two example scenes. Again, the labels assigned
to the points are taken from a sample of the posterior distribution P (z|w), as
generated when learning the clustering. While clearly visible that the majority
of the points has been labeled correctly, such that the correct topic has the
maximum likelihood, the differentiation is not as perfect as for the two simple
object classes of the first corpus. Some interesting aspects of the feature to
class assignments can be seen: The box contains two stripes of points, that are
classified the same as the balloon. This is due to the smoothing effect when
calculating the surface normal using the PCA method. Since we average over
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Figure 5.28: Classification accuracy for the discretization resolutions with respect to sup-
port distance and raster resolution

the surface normals intersecting with the “spinning image” of the feature, in
that particular area, the averaging of the smoothed corner with the flat sides
of the boxes is similar to the curvature of the balloon. This also explains why
the edge itself is not similar to the balloon, as the averaging here lacks the flat
parts. Other missclassifications include the upper corner of the back of the
chair, which is labeled like the box. Knowing that features with a radius of
10 cm are used, this seems not too unreasonable, as the backrest is completely
flat in this area. Also the partial “balloon” classifications of the humans seem
sensible enough, considering the locality of the features.

5.4 Evaluation

Comparing the unsupervised clustering methods presented in this chapter, we
see that the usage of latent Dirichlet allocation clearly leads to better and more
stable results than the usage of hierarchical clustering. For the first corpus,
both methods mostly lead to perfect classification results. The advantage of
LDA here, is the better performance across different support distances. Also hi-
erarchical clustering tends to put outliers (scan segments dissimilar to all other
segments) into an individual cluster. This does not occur using LDA for clus-
tering. The second corpus is difficult for both methods. Neither was able to
classify all scan segments perfectly. Using hierarchical clustering, we were not
even able to find a range of parameters with reliable results. With LDA, however,
we successfully determined a suitable range of parameters, where classification
results are correct for more than 85 % of the scan segments; individual param-
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Figure 5.29: Evaluation of classification accuracy for various values of alpha and beta

eter combinations even classify up to 98 % of the segments correctly. Given
the difficulty of the input data, this is an highly satisfactory result. We also
found some limitations of LDA-based classification. These include the rather
high computational complexity, that is particular problematic in applications
with many object classes and high measurement densities. The randomized
initialization of the Markov chain influences the clustering result. This renders
exact reproduction of results difficult, which might be critical for some applica-
tions. Our evaluation of the parameter space showed that the feature-specific
parameters depend on the characteristics of the corpus. This is unfortunate—
yet not surprising—as it causes the need for application specific adaptation of
the parameters. On the other hand, we found the optimal range of hyperparam-
eters of LDA to be valid for both data sets, which indicates that no adjustments
are necessary here. However, due to the small number of corpora we used, this
conclusion needs further experimental evidence.
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Figure 5.30: Illustrations of the point-wise labeling of the range data with samples of the
LDA topic assignment vector z for scans of corpus two
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6.1 Conclusions

In this thesis, we presented a new approach to scene analysis from range data.
We perform unsupervised discovery of object classes in 3D range data, based
on feature distributions. For the purpose of shape based clustering, we extract
surface descriptors from 3D point clouds. We evaluate spin images and develop
an enhanced, local, free-form surface descriptor, that shows better discrimina-
tive performance in our experiments. Instead of summing points projected to
a coordinate system relative to the query point, our proposal is to consider the
angle between the surface normal at the query point and the surface normals
of the projected points.

We apply latent Dirichlet allocation to the feature distributions, to learn a
clustering of 3D objects according to similarity in shape. The learned feature
distributions of the clusters can subsequently be used as models for classifica-
tion of unseen data. An important advantage of our approach is that there is no
need for labeled training data to learn the partitioning.

In experiments on laser range scans, we evaluate the accuracy of our ap-
proach. We apply it to two data sets of differing difficulty. For simple, distinct
objects, we achieve perfect classification on a wide variety of settings for the
feature generation process. For the second data set, containing more complex
objects with varied appearance, we still achieve a robust performance with over
85 percent correctly classified objects. We compare the results to another ap-
proach in which hierarchical clustering is used, instead of latent Dirichlet allo-
cation, to determine the partitioning of the data. According to our expectations
the performance of our approach is superior in terms of achieved accuracy, as
well as with respect to robustness to variations in the feature generation step.

71



6 Conclusions and Outlook

6.2 Future Work

In this section, we want to present some proposals for future improvements of
our approach. First of all, being a feature based approach, further improve-
ments in surface signatures will directly improve the results of classification, in
particular for difficult data. Also using a mixture of features, covering differ-
ent object characteristics could improve the categorization quality. However, a
mixture of the two feature types used in this thesis, did not improve the results.

In data preprocessing we relied on a spatial clustering to get scan segments
that contain a single object class. This bases on the assumption, that there is a
gap in-between objects and thus requires steps like floor extraction, to ensure
suitable gaps are there. A more sophisticated proceeding would possibly be
favorable, with respect to applicability to range scans where such preprocessing
is difficult, e.g. in case of highly cluttered scenes. Furthermore we determine
the object class by choosing the prevailing topic as assigned by LDA. In many
cases an object class is a mixture of several kinds of feature distributions. A
good example is the chair class, that has a lot in common with the box class, yet
the presence of some features strongly suggest an object belongs to the chair
class. Here a more sophisticated choice of the final object class might improve
the results for classes that share features.

In terms of computational cost, currently the most limiting factor is feature
generation. We generate one surface descriptor per point measurement, which
generates a lot of redundant features. Enhancements could be achieved using
point-of-interest or region-of-interest detectors. Also, a good sampling strategy
would lead to improved efficiency. Due to its ability to work on discrete data,
regardless of the information content, our approach is easily adaptable to in-
clude feature information from other sensors. Thus, the inclusion of e.g. visual
information is very likely to improve the results of the presented method.
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Figure A.1: Learning results, topic distribution

At this point we show learning re-
sults for the second corpus, generated
using our feature proposal to build
the feature distributions and latent
Dirichlet allocation for clustering. The
parameters used for feature genera-
tion are

Support Distance: 0.2 m
Raster Resolution: 3 × 3
Discretization Res.: 13 values

For LDA we set the topic count to
five, which is the number of classes
present in the corpus, and chose the
parameters for the prior Dirichlet dis-
tributions to be

Alpha: 0.025
Beta: 0.050

Figure A.1 shows the topic distribu-
tions found for the individual scan
segments. Each color corresponds to
a topic id. There is a strong tendency
towards few dominant topics in the
distribution; This is due to the low
value for α. The following pages show
the sampled topic-to-word—i.e. class
id to point measurement—assignment
vector z for a selection of scan seg-
ments. The id to color correspondence
is the same as in Figure A.1.
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Figure A.2: Scan Segments
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Figure A.3: Scan Segments (continued)
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